LETTER
Synthesis of (+)-Eburnamonine
1479
Asymmetry 2011, 22, 499. (d) Prasad, K. R.; Penchalaiah, K.
Tetrahedron: Asymmetry 2011, 22, 1400. (e) Prasad, K. R.;
Swain, B. J. Org. Chem. 2011, 76, 2029. (f) Prasad, K. R.;
Pawar, A. B. Synlett 2010, 1093. (g) Prasad, K. R.; Pawar, A.
B. ARKIVOC 2010, (vi), 39. (h) Prasad, K. R.; Gandi, V. R.
Synlett 2009, 2593. (i) Prasad, K. R.; Gholap, S. L. J. Org.
Chem. 2008, 73, 2. (j) Prasad, K. R.; Gholap, S. L. J. Org.
Chem. 2008, 73, 2916. (k) Prasad, K. R.; Swain, B.
Tetrahedron: Asymmetry 2008, 19, 1134. (l) Prasad, K. R.;
Chandrakumar, A. J. Org. Chem. 2007, 72, 6312.
(m) Prasad, K. R.; Gholap, S. L. J. Org. Chem. 2006, 71,
3643.
scribed by Schultz and Pettus, oxidation of 18 with
TPAP/NMMO furnished (+)-eburnamonine (1) in 40%
yield.11 The spectral and physical data are in complete
agreement with that reported in literature (Scheme 3).3c
In conclusion, a linear strategy for the synthesis of indole
alkaloid (+)-eburnamonine is presented from L-ethyl lac-
tate in 15 steps and 3.2% overall yield. The synthetic se-
quence showcased the use of the Johnson–Claisen
rearrangement for the construction of the chiral quaterna-
ry center, Pictet–Spengler reaction and ring-closing me-
tathesis for the completion of the pentacyclic ring. Also,
construction of the chiral quaternary center possessing an
alkyl, alkenyl, and alcohol functionality makes it a viable
building block for the synthesis of other structurally relat-
ed alkaloids, which is in progress.
(5) Dieters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.
(6) For a recent application of lactic acid in the synthesis of
chiral quaternary isocyanide, see: Ichikawa, Y.; Matsuda,
Y.; Okumura, K.; Nakamura, M.; Masuda, T.; Kotsuki, H.;
Nakano, K. Org. Lett. 2011, 13, 2520.
(7) Baldwin, J. E.; Moloney, M. G.; Parsons, A. F. Tetrahedron
1992, 48, 9373.
(8) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(9) The minor diastereomer was isolated in 38% yield.
(10) (a) Schrodi, Y.; Pederson, R. L. Aldrichimica Acta 2007, 40,
45. (b) Grubbs, R. H. Angew. Chem. Int. Ed. 2006, 45, 3760.
(c) Grubbs, R. H. Tetrahedron 2004, 60, 7117. (d) Marco, J.
A.; Carda, M.; Murga, J.; Falomir, E. Tetrahedron 2007, 63,
2929.
Acknowledgment
We thank the Department of Science and Technology (DST), New
Delhi for funding. K.R.P. is a Swarnajayanthi fellow of DST, New
Delhi. J.E.N. thanks Council of Scientific and Industrial Research
(CSIR), New Delhi for a senior research fellowship.
(11) Preparation of 17
Supporting Information for this article is available online at
To a stirred solution of the diene 5 (24 mg, 0.06 mmol) in dry
CH2Cl2 (6 mL) was added Grubbs II catalyst (2 mg, 5 mol%)
under an argon atmosphere, and the reaction mixture was
stirred at r.t. for 5 h. After completion of the reaction (TLC),
most of the solvent was evaporated off, and the crude residue
thus obtained was purified by silica gel column chroma-
tography using PE–EtOAc (7:3) as eluent to afford 17 (18
mg, 83%) as a yellow foam. [α]D +179.2 (c 0.6, CHCl3). IR
(neat): νmax = 3371, 2960, 2930, 1458, 1048 cm–1. 1H NMR
(400 MHz, CDCl3): δ = 7.78 (br s, 1 H), 7.49 (d, J = 7.5 Hz,
1 H), 7.33 (d, J = 8.0 Hz, 1 H), 7.34–7.06 (m, 7 H), 5.87 (dd,
J1 = 10.1 Hz, J2 = 4.6 Hz, 1 H), 5.44 (d, J = 10.1 Hz, 1 H),
4.36 (s, 2 H), 3.64 (s, 1 H), 3.58 (qd, J1 = 6.0 Hz, J2 = 2.9 Hz,
1 H), 3.52 (qd, J1 = 6.0 Hz, J2 = 3.0 Hz, 1 H), 3.33 (dd,
J1 = 16.4 Hz, J2 = 4.7 Hz, 1 H), 3.09 (dd, J1 = 10.9 Hz,
J2 = 4.8 Hz, 1 H), 3.01 (d, J = 16.4 Hz, 1 H), 2.98–2.80 (m,
1 H), 2.78 (d, J = 16.4 Hz, 1 H), 2.58 (td, J1 = 8.4 Hz,
J2 = 3.0 Hz, 1 H), 2.02–1.92 (m, 1 H), 1.87 (q, J = 7.7 Hz, 2
H), 1.46–1.36 (m, 1 H), 1.10 (t, J = 7.6 Hz, 3 H). 13C NMR
(100 MHz, CDCl3): δ = 138.7, 136.2, 133.6, 132.9, 128.2 (2
C), 127.5 (2 C), 127.2, 126.8, 126.1, 121.5, 119.3, 117.9,
111.9, 110.7, 72.7, 68.0, 61.2, 55.1, 52.4, 43.0, 37.4, 32.5,
21.6, 8.9. HRMS: m/z calcd for [C26H30N2O + H]: 387.2436;
found: 387.2436.
m
iotSrat
ungIifoop
r
t
References and Notes
(1) (a) Zenk, M. H.; Juenger, M. Phytochemistry 2007, 68,
2757. (b) Leonard, J. Nat. Prod. Rep. 1999, 16, 319.
(c) Saxton, J. E. Nat. Prod. Rep. 1997, 14, 559.
(2) For synthesis of (±)-eburnamonine, see: (a) Kalaus, G.;
Malkieh, M.; Katona, I.; Peredy, M.; Koritsanszky, T.;
Kalaman, A.; Szantay, C. J. Org. Chem. 1986, 50, 3760.
(b) Magnus, P.; Pappalardo, P.; Southwell, I. Tetrahedron
1986, 42, 3215. (c) Shono, T.; Matsumura, Y.; Ogaki, M.;
Onomura, O. Chem. Lett. 1987, 1447. (d) Wenkert, E.;
Hudlicky, T. J. Org. Chem. 1988, 53, 1953. (e) Wasserman,
H.; Kuo, G. Tetrahedron Lett. 1989, 30, 873. (f) Meyers, A.
I.; Romine, J.; Robichaud, A. J. Heterocycles 1990, 30, 339.
(g) Greiner, P.; Feldman, P. L.; Chu-Moyer, M. Y.;
Rapoport, H. J. Org. Chem. 1990, 55, 3068. (h) Ihara, M.;
Takahashi, M.; Taniguchi, N.; Yasui, K.; Niitsuma, H.;
Fukumoto, J. J. Chem. Soc., Perkin Trans. 1 1991, 25.
(i) Karvinen, E.; Lounasmaa, M. Heterocycles 1992, 34,
1773. (j) Ghosh, A. K.; Kawahama, R. J. Org. Chem. 2000,
65, 5433.
(3) (a) Takano, S.; Yonaga, M.; Morimsto, M.; Ogasawara, K.
J. Chem. Soc., Perkin Trans. 1 1985, 305. (b) Hakam, K.;
Thielmann, M.; Thielmann, T.; Winterfeldt, E. Tetrahedron
1987, 43, 2035. (c) Node, M.; Nagasawa, H.; Fuji, K. J. Am.
Chem. Soc. 1987, 109, 7901. (d) Node, M.; Nagasawa, H.;
Fuji, K. J. Org. Chem. 1990, 55, 517. (e) Schultz, A. G.;
Pettus, L. J. Org. Chem. 1997, 62, 6855. (f) Wee, A. G. H.;
Yu, Q. Tetrahedron Lett. 2000, 41, 587. (g) Wee, A. G. H.;
Yu, Q. J. Org. Chem. 2001, 66, 8935. (h) Jones, S. B.;
Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature
(London) 2011, 475, 183. (i) For an enzymatic approach,
see: Palmisano, G.; D’Anniballe, P.; Santagostino, M.
Tetrahedron 1994, 50, 9487.
Preparation of 18
To a stirred solution of the alkene 17 (18 mg, 0.05 mmol) in
dry EtOH (2 mL) was added preactivated palladium on
charcoal (10% w/w, 20 mg) under a nitrogen atmosphere.
The reaction mixture was then subjected to hydrogenation
under a hydrogen balloon and stirred at r.t. for 24 h. After
completion of the reaction (TLC), it was filtered through a
short pad of Celite using CHCl3 (20 mL). The solvent was
evaporated off, and the crude residue thus obtained was
purified by silica gel column chromatography using EtOAc–
MeOH (19:1) as eluent to afford 18 (10 mg, 78%) as a white
solid. [α]D +85.8 (c 0.4, CHCl3); mp (165–168 °C). IR
(KBr): νmax = 3649, 3252, 2922, 1462, 1096 cm–1. 1H NMR
(400 MHz, CDCl3): δ = 7.84 (br s, 1 H), 7.47 (d, J = 7.7 Hz,
1 H), 7.31 (d, J = 8.0 Hz, 1 H), 7.15 (t, J = 7.3 Hz, 1 H), 7.09
(t, J = 7.5 Hz, 1 H), 3.75 (td, J1 = 11.6 Hz, J2 = 2.4 Hz, 1 H),
(4) (a) Prasad, K. R.; Kumar, S. M. Synlett 2011, 1602.
(b) Prasad, K. R.; Penchalaiah, K. J. Org. Chem. 2011, 76,
6889. (c) Prasad, K. R.; Gandi, V. R. Tetrahedron:
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 1477–1480