Inorganic Chemistry
Article
Springer-Verlag: Berlin, Germany, 2000. (e) Shaik, S.; Cohen, S.;
Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. Chem. Rev. 2010, 110, 949.
(15) Lubben, M.; Meetsma, A.; Wilkinson, E. C.; Feringa, B.; Que, L.,
Jr. Angew. Chem., Int. Ed. 1995, 34, 1512.
(33) Tsai, S.-C.; Klinman, J. P. Biochemistry 2001, 40, 2303.
(34) Mann, C. K.; Barnes, K. K. Electrochemical Reactions in Non-
aqueous Systems; Marcel Dekker: New York, 1970.
(35) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(16) (a) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.;
(36) Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT,
Stubna, A.; Kim, J.; Munck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc.
2004, 126, 472. (b) Kumar, D.; Hirao, H.; Que, L., Jr.; Shaik, S. J. Am.
̈
2004.
(37) Dennington, R., II; Keith, T.; Millam, J.; Eppinnett, K.; Hovell,
W. L.; Gilliland, R. Gaussview; Semichem, Inc.: Shawnee Mission, KS,
2003.
(38) The EPR signals assigned as an alkoxo complex are similar to
[Fe(OMe)(N4Py)]2+. See: Roelfes, G.; Lubben, M.; Chen, K.; Ho, R.
Y. N.; Meetsma, A.; Genseberger, S.; Hermant, R. M.; Hage, R.;
Mandal, S. K.; Young, V. G.; Zang, Y.; Kooijman, H.; Spek, A. L.; Que,
L., Jr.; Feringa, B. L. Inorg. Chem. 1999, 38, 1929.
(39) Hong, S.; Lee, Y.-M.; Shin, W.; Fukuzumi, S.; Nam, W. J. Am.
Chem. Soc. 2009, 131, 13910.
(40) The KIE value for this reaction performed at 298 K in the
absence of Sc3+ is determined to be 13.
Chem. Soc. 2005, 127, 8026. (c) Wang, D.; Zhang, M.; Buhlmann, P.
B.; Que, L., Jr. J. Am. Chem. Soc. 2010, 132, 7638.
(17) Oh, N. Y.; Suh, Y.; Park, M. J.; Seo, M. S.; Kim, J.; Nam, W.
Angew. Chem., Int. Ed. 2005, 44, 4235.
̈
(18) (a) Gupta, R.; Borovik, A. S. J. Am. Chem. Soc. 2003, 125, 13234.
(b) Pestovsky, O.; Bakac, A. J. Am. Chem. Soc. 2004, 126, 13757.
(c) Lam, W. W. Y.; Man, W.-L.; Lau, T.-C. Coord. Chem. Rev. 2007,
251, 2238. (d) de Visser, S. P. J. Am. Chem. Soc. 2010, 132, 1087.
(e) Prokop, K. A.; de Visser, S. P.; Goldberg, D. P. Angew. Chem., Int.
Ed. 2010, 49, 5091. (f) Kojima, T.; Nakayama, K.; Ikemura, K.; Ogura,
T.; Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 11692.
(19) (a) Mayer, J. M. Acc. Chem. Res. 1998, 31, 441. (b) Cukier, R. I.;
Nocera, D. G. Annu. Rev. Phys. Chem. 1998, 49, 337. (c) Mayer, J. M.
Annu. Rev. Phys. Chem. 2004, 55, 363. (d) Huynh, M. H. V.; Meyer, T.
J. Chem. Rev. 2007, 107, 5004. (e) Mayer, J. M. Acc. Chem. Res. 2011,
44, 36.
(20) (a) Goto, Y.; Watanabe, Y.; Fukuzumi, S.; Jones, J. P.;
Dinnocenzo, J. P. J. Am. Chem. Soc. 1998, 120, 10762. (b) Goto, Y.;
Matsui, T.; Ozaki, S.; Watanabe, Y.; Fukuzumi, S. J. Am. Chem. Soc.
1999, 121, 9497. (c) Nehru, K.; Seo, M. S.; Kim, J.; Nam, W. Inorg.
Chem. 2007, 46, 293.
(41) There is another possibility that [FeIII(OH)(N4Py)]2+ oxidizes
2,5-(MeO)2C6H3CHOH• to yield [FeII(N4Py)]2+, H2O, and 2,5-
(MeO)2C6H3CHO. Then, [FeII(N4Py)]2+ is oxidized by [FeIV(O)
(N4Py)]2+ to yield 2,5-(MeO)2C6H3CHO and [FeIII(OH)(N4Py)]2+.
However, a control experiment shows that [FeIV(O)(N4Py)]2+ does
not oxidize [FeII(N4Py)]2 + in the presence of 2,5-
(MeO)2C6H3CH2OH in MeCN. Thus, the proportionation of the
iron(IV) and iron(II) complexes as a reason why [FeIV(O)(N4Py)]2+
acts as a one-electron oxidant rather than a two-electron oxidant is
unlikely under the present reaction conditions.
(42) (a) Atkinson, J. K.; Hollenberg, P. F.; Ingold, K. U.; Johnson, C.
C.; Le Tadic, M.-H.; Newcomb, M.; Putt, D. A. Biochemistry 1994, 33,
10630. (b) Matsuo, T.; Mayer, J. M. Inorg. Chem. 2005, 44, 2150.
(43) Melander, L.; Saunders, W. H., Jr. Reaction Rates of Isotopic
Molecules; Wiley Interscience: New York, 1980; pp 29−36.
(44) Klinker, E. J.; Shaik., S.; Hirao, H.; Que, L., Jr. Angew. Chem., Int.
Ed. 2009, 48, 1291.
(21) Yuasa, J.; Fukuzumi, S. J. Am. Chem. Soc. 2006, 128, 14281.
(22) Yuasa, J.; Yamada, S.; Fukuzumi, S. J. Am. Chem. Soc. 2006, 128,
14938.
(23) For other metal ion-promoted reactions, see: (a) Fukuzumi, S.;
Ohkubo, K.; Morimoto, Y. Phys. Chem. Chem. Phys. 2012, 14, 8472.
(b) Fukuzumi, S.; Ohkubo, K.; Okamoto, T. J. Am. Chem. Soc. 2002,
124, 14147. (c) Fukuzumi, S.; Fujii, Y.; Suenobu, T. J. Am. Chem. Soc.
2001, 123, 10191. (d) Fukuzumi, S. Bull. Chem. Soc. Jpn. 1997, 70, 1.
(e) Fukuzumi, S.; Okamoto, T. J. Am. Chem. Soc. 1993, 115, 11600.
(f) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem.
Soc. 1987, 109, 305. (g) Fukuzumi, S.; Nishizawa, N.; Tanaka, T. J.
Chem. Soc., Perkin Trans. 2 1985, 371. (h) Fukuzumi, S.; Kuroda, S.;
Tanaka, T. J. Am. Chem. Soc. 1985, 107, 3020.
(24) (a) Abu-Omar, M. M. J. Am. Chem. Soc. 2007, 129, 11505.
(b) Shearer, J.; Zhang, C. X.; Hatcher, L. Q.; Karlin, K. D. J. Am. Chem.
Soc. 2003, 125, 12670.
(25) There has been no example of C−H bond cleavage that
proceeds via a PT/ET pathway, however that of O−H bond cleavage
via a PT/ET pathway has been reported. See: Litwinienko, G.; Ingold,
K. U. Acc. Chem. Res. 2007, 40, 222.
(45) (a) Lehnert, N.; Solomon, E. I. J. Biol. Inorg. Chem. 2003, 8, 294.
(b) Hatcher, E.; Soudackov, A. V.; Hammes-Schiffer, S. J. Am. Chem.
Soc. 2004, 126, 5763. (c) Meyer, M. P.; Klinman, J. P. J. Am. Chem. Soc.
2011, 133, 430.
(46) For 2,5-(MeO)2C6H3OH•+ produced by photochemical
methods, see: (a) Branchi, B.; Bietti, M.; Ercolani, G.; Izquierdo,
M. A.; Miranda, M. A.; Stella, L. J. Org. Chem. 2004, 69, 8874.
(b) Baciocchi, E.; Bietti, M.; Gerini, M. F.; Manduchi, L.; Salamone,
M.; Steenken, S. Chem.Eur. J. 2001, 7, 1408.
(47) The extrapolation of the second-order plot to the time when the
reaction was started by mixing two reactant solutions, which is about 5
min before starting EPR measurements, suggests that the radical cation
is produced quantitatively.
(26) (a) Lee, Y.-M.; Kotani, H.; Suenobu, T.; Nam, W.; Fukuzumi, S.
J. Am. Chem. Soc. 2008, 130, 434. (b) Fukuzumi, S.; Kotani, H.;
Suenobu, T.; Hong, S.; Lee, Y.-M.; Nam, W. Chem.Eur. J. 2010, 16,
354.
(48) Yield = [Product]/[2,5-(MeO)2C6H3CH2OH]0 × 100 where
[2,5-(MeO)2C6H3CH2OH]0 is the initial concentration of 2,5-
(MeO)2C6H3CH2OH.
(49) We could not observe the Sc3+-bound complexes by ESI-mass
except for [FeIII(N4Py)(NCMe)]3+ which may be due to weak Fe-O
bond of the Sc3+-bound complex. However, the EPR spectrum of
resulting solution shown in Supporting Information, Figure S11b
agreed with the spectrum of the Sc3+-bound complex reported in our
previous study.27a
(27) (a) Morimoto, M.; Kotani, H.; Park, J.; Lee, Y.-M.; Nam, W.;
Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 403. (b) Fukuzumi, S. Prog.
Inorg. Chem. 2009, 56, 49.
(28) For the crystal structure of a Sc3+-bound iron(IV)-oxo complex,
see: Fukuzumi, S.; Morimoto, Y.; Kotani, H.; Naumov, P.; Lee, Y.-M.;
Nam, W. Nature Chem. 2010, 2, 756.
(29) Sc3+ ion is known to be the most effective for metal ion-coupled
electron transfer. See: (a) Fukuzumi, S.; Ohkubo, K. Chem.Eur. J.
2000, 6, 4532. (b) Fukuzumi, S.; Ohkubo, K. J. Am. Chem. Soc. 2002,
124, 10270.
(50) Love, B. E.; Bonner-Stewart, J.; Forrest, L. A. Synlett 2009, 5,
813.
(51) The major product in the oxidation of 2,5-
(MeO)2C6H3CH2OH by CAN is not a dimer of aldehyde but
diquinone, 4,4′-dimethoxy-[bi-1,4-cyclohexadien-1-yl]-3,3′,6,6′-te-
trone.50
(30) For the effect of Brønsted acid on the reactivity of the iron(IV)-
oxo complex, see: Park, J.; Morimoto, Y.; Lee, Y.-M.; Nam., W.;
Fukuzumi, S. J. Am. Chem. Soc. 2012, 134, 3903.
(31) Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory
Chemicals, 6th ed.; Pergamon Press: Oxford, U.K., 2009.
(32) Saltzman, H., Sharefkin, J. G., Eds.; Organic Syntheses, Vol. V;
Wiley: New York, 1973; p 658.
(52) In the oxidation of benzyl alcohol by [Fe(O)(N4Py)]2+ both in
the presence and absence of Sc3+, we cannot detect dimerized products
as shown in Supporting Information, Figure S2. This may be because
the hydrogen-abstracted radicals by [Fe(O)(N4Py)]2+ can not
produce dimerized products not like radical cations of substrates.
10035
dx.doi.org/10.1021/ic3016723 | Inorg. Chem. 2012, 51, 10025−10036