Journal of the American Chemical Society
Article
this connectivity. Interestingly, a significant shift is observed. By
changing the number of bases, product distribution was
changed from higher-order structures to only two small
products, namely the dimer and the tetramer (Figure 6,
bottom, Scheme 6). In addition, where before only 17% of the
structures formed were dimer and the major product (41%)
was oligomeric, 3′3′ dimer is now one of the two principal
products (55% yield). Conversely, where 5′3′ connectivity
previously yielded smaller cyclic structures, we now see the
defined structures disappear completely, leaving only oligo-
meric assemblies. The assignment of the gel electrophoresis
bands as closed dimers and tetramers is supported by a number
of experiments that are described in the Supporting
Information.
This data supports the conclusion that, for the small linker
systems, strand-end-orientation is an important factor in
determining which DNA-to-linker connectivity provides the
greatest increase in stability. This can be readily predicted by
simple modeling such as that shown in Schemes 5 and 7.
Understanding the effect of DNA-to-linker connectivity
provides an extra dimension of tunability when designing
DNA structures. Connectivity can be used to fine-tune Tm by
an additional 7 °C, as well as provide a method to obtain
different self-assembled products, such as dimers or tetramers
rather than oligomers.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank FQRNT, NSERC, CFI, CIHR, and CSACS for
financial support, and Faisal Aldaye for the basic design of the
symmetrical assembly system.
REFERENCES
■
(1) Lin, C.; Liu, Y.; Rinker, S.; Yan, H. ChemPhysChem 2006, 7,
1641−1647.
(2) Seeman, N. C. J. Theor. Biol. 1982, 99, 237−247.
(3) Sobey, T. L.; Renner, S.; Simmel, F. C. J. Phys.: Condens. Matter
2009, 21, 034112.
(4) Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Lind-
Thomsen, A.; Mamdouh, W.; Gothelf, K. V.; Besenbacher, F.; Kjems,
J. ACS nano 2008, 2, 1213−1218.
(5) Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani,
R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L.
P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems,
J. Nature 2009, 459, 73−U75.
(6) Yang, H.; Altvater, F.; de Bruijn, A. D.; McLaughlin, C. K.; Lo, P.
K.; Sleiman, H. F. Angew. Chem., Int. Ed. 2011, 50, 4620−4623.
(7) McLaughlin, C. K.; Hamblin, G. D.; Sleiman, H. F. Chem. Soc.
Rev. 2011, 40, 5647−5656.
(8) Aldaye, F. A.; Sleiman, H. F. J. Am. Chem. Soc. 2007, 129, 13376−
13377.
(9) Shi, J.; Bergstrom, D. E. Angew. Chem., Int. Ed. 1997, 36, 111−
113.
(10) Zimmermann, J.; Cebulla, M. P. J.; Monninghoff, S.; von
Kiedrowski, G. Angew. Chem., Int. Ed. 2008, 47, 3626−3630.
(11) Scheffler, M.; Dorenbeck, A.; Jordan, S.; Wustefeld, M.; von
Kiedrowski, G. Angew. Chem., Int. Ed. 1999, 38, 3311−3315.
(12) Eryazici, I.; Prytkova, T. R.; Schatz, G. C.; Nguyen, S. T. J. Am.
Chem. Soc. 2010, 132, 17068−17070.
(13) Yoshizawa, M.; Fujito, M. Pure Appl. Chem. 2005, 77, 1107−
1112.
(14) Gibbs, J. M.; Park, S.-J.; Anderson, D. R.; Watson, K. J.; Mirkin,
C. A.; Nguyen, S. T. J. Am. Chem. Soc. 2005, 127, 1170−1178.
(15) Lo, P. K.; Karam, P.; Aldaye, F. A.; McLaughlin, C. K.; Hamblin,
G. D.; Cosa, G.; Sleiman, H. F. Nat. Chem. 2010, 2, 319−328.
(16) Seeman, N. C. Nature 2003, 421, 427−431.
(17) Yang, H.; McLaughlin, C. K.; Aldaye, F. A.; Hamblin, G. D.;
Rys, A. Z.; Rouiller, I.; Sleiman, H. F. Nat. Chem. 2009, 1, 390−396.
(18) Yang, H.; Metera, K. L.; Sleiman, H. F. Coord. Chem. Rev. 2010,
254, 2403−2415.
(19) Jin, R.; Wu, G.; Li, Z.; Mirkin, C. A.; Schatz, G. C. J. Am. Chem.
Soc. 2003, 125, 1643−1654.
(20) Long, H.; Kudlay, A.; Schatz, G. C. J. Phys. Chem. B 2006, 110,
2918−2926.
(21) Lytton-Jean, A. K. R.; Gibbs-Davis, J. M.; Long, H.; Schatz, G.
C.; Mirkin, C. A.; Nguyen, S. T. Adv. Mater. 2009, 21, 706−709.
(22) Park, S. Y.; Gibbs-Davis, J. M.; Nguyen, S. T.; Schatz, G. C. J.
Phys. Chem. B 2007, 111, 8785−8791.
(23) Gibbs-Davis, J. M.; Schatz, G. C.; Nguyen, S. T. J. Am. Chem.
Soc. 2007, 129, 15535−15540.
(24) Kudlay, A.; Gibbs, J. M.; Schatz, G. C.; Nguyen, S. T.; Olvera de
la Cruz, M. J. Phys. Chem. B 2007, 111, 1610−1619.
(25) Stepp, B. R.; Gibbs-Davis, J. M.; Koh, D. L. F.; Nguyen, S. T. J.
Am. Chem. Soc. 2008, 130, 9628−9629.
(26) Eryazici, I.; Yildirim, I.; Schatz, G. C.; Nguyen, S. T. J. Am.
Chem. Soc. 2012.
CONCLUSIONS
■
We have shown a simple method to control both the stability
and the self-assembly behavior of DNA structures. By using
small, synthetic linkers that connect two adjacent duplexes,
factors such as linker size, rigidity and connectivity can increase
the thermal denaturation temperature of 17-base pair duplexes
by up to 10 °C and significantly narrow the melting profile of
the two duplexes. For the same DNA sequence, one can now
tune the melting temperature to vastly different values by
selecting the linker structure and DNA-to-linker connectivity.
Furthermore, a small rigid linker can be used to directly affect
the self-assembly product distribution. Because of the strict
requirements that it imposes, subtle changes in the orientation
of the linked strands (e.g., 5′3′ vs 3′3′) can now lead to
dramatic changes in the self-assembly behavior. These
variations can be readily predicted using a simple strand-end
alignment model.
̈
̈
Incorporation of these linkers into DNA strands is a very
simple, on-column, and high-yielding process. We anticipate the
usefulness of this method in DNA nanotechnology, where the
melting temperature of the same DNA sequence can now be
rationally varied and controlled with simple structural
modifications of the duplex linkers.
Fundamentally, this study contributes further insight into
DNA interduplex interactions, which are important in
chromosome packaging and homologous recombination. In
addition, the large increase in stability and melting cooperativity
of short duplexes will find a number of applications in
biotechnology, such as in more sensitive DNA detection and
diagnostics.
ASSOCIATED CONTENT
■
S
* Supporting Information
Detailed methods, DNA sequences, quantitative analysis,
additional figures. This material is available free of charge via
(27) Aldaye, F. A.; Sleiman, H. F. J. Am. Chem. Soc. 2007, 129,
10070−10071.
14388
dx.doi.org/10.1021/ja3033197 | J. Am. Chem. Soc. 2012, 134, 14382−14389