10.1002/adsc.202000615
Advanced Synthesis & Catalysis
Figure 1. Geometrical features and plots of noncovalent interactions (NCIPlot) of the transition states leading to (a) the
major enantiomer and (b) the minor enantiomer. Atomic distances are given in Å .
The present work demonstrates that cooperative
action of a metal and ligand through alcohol–alkoxide
interconversion can facilitate enantioselective transfer
hydrogenation of ketones and shows that the O–
H···O/sp3-C–H···O two-point hydrogen-bonding
provided by the metal-bound prolinol-phosphine
chiral ligand, which was previously proposed for
copper catalysis,[8,10] is preserved in the iridium-
catalyzed enantioselective transfer hydrogenation of
ketones with formic acid. Additionally, in the present
Ir catalysis, the pyrrolidine framework of the ligand
causes an sp3-C–H/ interaction with the carbonyl-
substituted aromatic rings, allowing efficient prochiral
face selection for the reaction of various alkyl aryl
ketones. The tolerance toward various ketones
regardless of the steric demand of the alkyl group is a
significant feature of this catalysis. Thus, we
confirmed that the concept of ligand–substrate
noncovalent interactions involving nonpolar sp3-C–H
bonds serves as a versatile guiding principle for the
design of enantioselective catalysis, the significance of
which had not been previously demonstrated.
[1]a) R. H. Morris, Chem. Soc. Rev. 2009, 38, 2282–2291.
b) D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621–
6686. c) F. Foubelo, C. Nájera, M. Yus, Tetrahedron:
Asymmetry. 2015, 26, 769–790.
[2] a) S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R.
Noyori, J. Am. Chem. Soc. 1995, 117, 7562–7563. b) A.
Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya, R. Noyori,
J. Am. Chem. Soc. 1996, 118, 2521–2522. c) K.-J. Haack,
S. Hashiguchi, A. Fujii, T. Ikariya, R. Noyori, Angew.
Chem., Int. Ed. Engl. 1997, 36, 285–288. d) M.
Yamakawa, H. Ito, R. Noyori, J. Am. Chem. Soc. 2000,
122, 1466–1478. e) M. Yamakawa, I. Yamada, R.
Noyori, Angew. Chem., Int. Ed. 2001, 40, 2818–2821. f)
R. Noyori, M. Yamakawa, S. Hashiguchi, J. Org. Chem.
2001, 66, 7931–7944. g) T. Ikariya, A. J. Blacker, Acc.
Chem. Res. 2007, 40, 1300–1308.
[3] a) Y. Blum, D. Czarkie, Y. Rahamim, Y. Shvo,
Organometallics. 1985, 4, 1459–1461. b) Y. Shvo, D.
Czarkie, Y. Rahamim, J. Am. Chem. Soc. 1986, 108,
7400–7402.
[4] a) J. Zhang, G. Leitus, Y. Ben-David, D. Milstein,
Angew. Chem., Int. Ed. 2006, 45, 1113–1115. b) R.
Langer, G. Leitus, Y. Ben-David, D. Milstein, Angew.
Chem., Int. Ed. 2011, 50, 2120–2124.
Experimental Section
A General Procedure for Iridium(I)-Catalyzed Transfer
Hydrogenation of Ketones: In a glove box, L5 (2.2 mg,
0.0050 mmol) was placed in a screw vial containing a
magnetic stirring bar. CPME (1 mL), [IrCl(cod)]2 (1.3 mg,
0.0020 mmol) and K2CO3 (1.4 mg, 0.010 mmol) were added
to the vial and the mixture was stirred at room temperature
for 5 minutes to give a pale yellow solution. Formic acid
(18.4 mg, 0.40 mmol) and ketone 1a (24.0 mg, 0.20 mmol)
were added sequentially. The vial was sealed with a screw
cap and taken out from the glove box. After stirring for 6 h
at 25 ˚C, the mixture was quenched with saturated K2CO3
aq. and extracted with Et2O. The organic layer was dried
over anhydrous MgSO4. After filtration, the filtrate was
evaporated under reduced pressure to give a crude mixture.
Flash chromatography on silica gel (0–10% EtOAc/hexane)
gave 2a (19.7 mg, 0.16 mmol) in 82% yield. The ee value
(96% ee) was determined by HPLC analysis on a chiral
stationary phase: CHIRALCEL® OD-H column 4.6 mm ×
250 mm, Daicel Chemical Industries, hexane/2-propanol =
5:95, 1.0 mL/min, 40 ˚C, 220 nm UV detector, retention
time = 7.6 min for (R) isomer and 8.4 min for (S) isomer.
[5] J. Yu, J. Long, Y. Yang, W. Wu, P. Xue, L. W. Chung,
X.-Q. Dong, X. Zhang, Org. Lett. 2017, 19, 690–693.
[6] a) M. B. Díaz-Valenzuela, S. D. Phillips, M. B. France,
M. E. Gunn, M. L. Clarke, Chem. Eur. J. 2009, 15,
1227–1232. b) N. Meyer, A. J. Lough, R. H. Morris,
Chem. Eur. J. 2009, 15, 5605–5610. c) D. Wang, A.
Bruneau-Voisine, J.-B. Sortais, Catal. Commun. 2018,
105, 31–36.
[7] For enantioselective hydrogenations of tert-alkyl aryl
ketones using molecular hydrogen, see: a) T. Ohkuma,
C. A. Sandoval, R. Srinivasan, Q. Lin, Y. Wei, K. Muñiz,
R. Noyori, J. Am. Chem. Soc. 2005, 127, 8288–8289. b)
M. L. Clarke, M. B. Díaz-Valenzuela, A. M. Z Slawin,
Organometallics. 2007, 26, 16–19. c) J. A. Fuentes, I.
Carpenter, N. Kann, M. L. Clarke, Chem. Commun.
2013, 49, 10245–10247. d) S. D. Phillips, J. A. Fuentes,
M. L. Clarke, Chem. Eur. J. 2010, 16, 8002–8005. e) W.
Baratta, C. Barbato, S. Magnolia, K. Siega, P. Rigo,
Chem. Eur. J. 2010, 16, 3201–3206. f) J. E. R. Martins,
D. J. Morris, M. Wills, Tetrahedron Lett. 2009, 50 688–
692. For efficient enantioselective hydrogenation of
alkyl aryl ketones with an P,NH,N chiral ligand, see: g)
W. Wu, S. Liu, M. Duan, X. Tan, C. Chen, Y. Xie, Y.
Lan, X.-Q. Dong, X. Zhang, Org. Lett. 2016, 18, 2938–
2941.
Acknowledgements
This work was supported by MEXT KAKENHI Grant Number
JP15H05801 (to M.S.) and JP18H04233 (to S.M.) in Precisely
Designed Catalysts with Customized Scaffolding, by JSPS
KAKENHI Grant Number JP18H03906 in Grant-in-Aid for
Scientific Research (A) to M.S., and by the Sakura Science Plan
through “Collaborative research activity course“ from JST
(Number: S2018F0228129) to S.M. S.J. thanks the Center of
Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of
Higher Education, Science, Research and Innovation.
[8] a) T. Ishii, R. Watanabe, T. Moriya, H. Ohmiya, S. Mori,
M. Sawamura, Chem. Eur. J. 2013, 19, 13547–13553. b)
M. C. Schwarzer, A. Fujioka, T. Ishii, H. Ohmiya, S.
Mori, M. Sawamura, Chem. Sci. 2018, 9, 3484–3493.
References
5
This article is protected by copyright. All rights reserved.