much less when compared with its corresponding host–guest
complex, and so, the transition state energies for the final SN2
substitutions leading to rotaxanes are significantly less stabilised.
As a control experiment, we employed the same reaction conditions
in the presence of a polyether dumbbell containing a DNP unit,
and we were unable to observe (see Fig. S12, ESIw) the formation
of any of the [2]rotaxane. In this case, the formation of acyclic
oligomers clearly outcompetes the formation of the targeted
mechanically interlocked rotaxane, and so the reaction has to be
carried out at lower temperatures for longer periods of time in
order for it to proceed efficiently.
B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart and
J. R. Heath, Nature, 2007, 445, 414–417; (c) A. Coskun,
J. M. Spruell, G. Barin, W. R. Dichtel, A. H. Flood, Y. Y. Botros
and J. F. Stoddart, Chem. Soc. Rev., 2012, 41, 4827–4859.
5 Q. Li, C.-H. Sue, S. Basu, A. K. Shveyd, W. Y. Zhang, G. Barin,
L. Fang, A. A. Sarjeant, J. F. Stoddart and O. M. Yaghi, Angew.
Chem., Int. Ed., 2010, 49, 6751–6755.
6 (a) D. L. Simone and T. M. Swager, J. Am. Chem. Soc., 2000, 122,
9300–9301; (b) M. A. Olson, A. Coskun, L. Fang, A. N. Basuray
and J. F. Stoddart, Angew. Chem., Int. Ed., 2010, 49, 3151–3156.
7 (a) E. Wasserman, J. Am. Chem. Soc., 1960, 82, 4433–4434;
(b) R. Wolovsky, J. Am. Chem. Soc., 1970, 92, 2132–2133;
(c) I. T. Harrison, J. Chem. Soc. Perkin. Trans. 1, 1974, 301–304.
8 (a) D. H. Busch and N. A. Stephenson, Coord. Chem. Rev., 1990,
100, 119–154; (b) S. Anderson, H. L. Anderson and J. K.
M. Sanders, Acc. Chem. Res., 1993, 26, 469–475; (c) Templated
Organic Synthesis, ed. F. Diederich and P. J. Stang, Wiley-VCH,
In summary, at the sacrifice of some easily synthesised and
commercially available acyclic starting materials, catenation
times can be shortened by a thermally assisted protocol from
days to one hour. The order of magnitude rate enhancement is
also accompanied by improved yields with respect to the starting
macrocyclic polyethers 1a–c – an observation which couples well
with the fact that these polyethers are comparatively challenging to
Weinheim, 1999; (d) M. J. Blanco, J. C. Chambron, M. C. Jimenez
´
and J.-P. Sauvage, Top. Stereochem., 2003, 23, 125–173;
(e) J. F. Stoddart, Chem. Soc. Rev., 2009, 38, 1802–1820;
(f) G. Barin, A. Coskun, M. M. G. Fouda and J. F. Stoddart,
ChemPlusChem, 2012, 77, 159–185.
9 (a) C. O. Dietrich-Buchecker and J.-P. Sauvage, Tettrahedron Lett.,
1983, 24, 5095–5098; (b) J. F. Stoddart, Chem. Soc. Rev., 2009, 38,
1521–1529; (c) J. J. Henkelis, T. K. Ronson, L. P. Harding and
M. J. Hardie, Chem. Commun., 2011, 47, 6560–6562.
synthesise. The [2]catenanes 5a4+, 5b4+ and 6b4+ as well as 5c4+
,
which represent, respectively, the degenerate, switchable, and
functionalised systems, were all synthesised to support the
generality and applicability of this synthetic protocol. The
promise of ‘‘[2]catenanes made to order’’1b we made more than
two decades ago is now another step closer to becoming a
reality, and we expect this method to facilitate the syntheses of
more exotic and functional MIMs – not necessarily limited to
donor–acceptor templation protocols – and to promote their
multifarious technological applications in the near future.
We thank Dr Turki S. Al-Saud and Dr Mohamed B.
Alfageeh at the King Abdullah City for Science and Technology
(KACST) in Saudi Arabia for their joint collaborative efforts.
A.C.F. and C.J.B. acknowledge support from an NSF Graduate
Research Fellowship. G.B. thanks the International Center
for Diffraction Data for the award of a 2012 Ludo Frevel
Crystallography Scholarship.
10 D. Curiel and P. D. Beer, Chem. Commun., 2005, 1909–1911.
11 (a) F. Vogtle, S. Meier and R. Hoss, Angew. Chem., Int. Ed. Engl.,
¨
1992, 31, 1619–1622; (b) A. G. Johnston, D. A. Leigh, R. J. Pritchard
and M. D. Deegan, Angew. Chem., Int. Ed. Engl., 1995, 34, 1209–1212;
(c) M. E. Belowich, C. Valente, R. A. Smaldone, D. C. Friedman,
J. Thiel, L. Cronin and J. F. Stoddart, J. Am. Chem. Soc., 2012, 134,
5243–5261.
12 (a) H. Y. Au-Yeung, G. D. Panto-s and J. K. M. Sanders, Proc. Natl.
Acad. Sci. U. S. A., 2009, 106, 10466–10470; (b) J. F. Stoddart and
H. M. Colquhoun, Tetrahedron, 2008, 64, 8231–8263; (c) H. Y.
Au-Yeung, G. D. Panto-s and J. K. M. Sanders, Angew. Chem., Int.
Ed., 2010, 49, 5331–5334.
13 (a) A. Trabolsi, N. Khashab, A. C. Fahrenbach, D. C. Friedman,
M. T. Colvin, K. K. Cotı, D. Benıtez, E. Tkatchouk, J.-C. Olsen,
´ ´
M. E. Belowich, R. Carmielli, H. A. Khatib, W. A. Goddard III,
M. R. Wasielewski and J. F. Stoddart, Nat. Chem., 2010, 2, 42–49;
(b) H. Li, A. C. Fahrenbach, S. V. Dey, S. Basu, A. Trabolsi,
Z. Zhu, Y. Y. Botros and J. F. Stoddart, Angew. Chem., Int. Ed.,
2010, 49, 8260–8265.
14 (a) A. Harada, J. Li and M. Kamachi, Nature, 1992, 356, 325–327;
(b) M. Fujita, F. Ibukuro, H. Hagihara and K. Ogura, Nature,
1994, 367, 720–723.
Notes and References
1 (a) G. Schill, Catenanes, Rotaxanes and Knots, Academic Press, New
York, 1971; (b) P. R. Ashton, T. T. Goodnow, A. E. Kaifer,
M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart,
C. Vicent and D. J. Williams, Angew. Chem., Int. Ed. Engl., 1989, 28,
1396–1399; (c) C. A. Hunter, J. Am. Chem. Soc., 1992, 114,
15 (a) B. Odell, M. V. Reddington, A. M. Z. Slawin, N. Spencer,
J. F. Stoddart and D. J. Williams, Angew. Chem., Int. Ed. Engl.,
1988, 27, 1547–1550; (b) C.-H. Sue, S. Basu, A. C. Fahrenbach,
A. K. Shveyd, S. K. Dey, Y. Y. Botros and J. F. Stoddart, Chem.
Sci., 2010, 1, 119–125.
5303–5311; (d) C. O. Dietrich-Buchecker, B. Frommberger, I. Luer,
¨
16 P. R. Ashton, B. Odell, M. V. Reddington, A. M. Z. Slawin,
J. F. Stoddart and D. J. Williams, Angew. Chem., Int. Ed. Engl.,
1988, 27, 1550–1553.
17 P. R. Ashton, C. L. Brown, E. J. T. Chrystal, T. Goodnow,
A. E. Kaifer, K. P. Parry, D. Philp, A. M. Z. Slawin, N. Spencer,
J. F. Stoddart and D. J. Williams, J. Chem. Soc., Chem. Commun.,
1991, 9, 630–634.
¨
J.-P. Sauvage and F. Vogtle, Angew. Chem., Int. Ed. Engl., 1993, 32,
1434–1437; (e) M. A. Olson, A. B. Braunschweig, T. Ikeda, L. Fang,
A. Trabolsi, A. M. Z. Slawin, S. I. Khan and J. F. Stoddart, Org.
Biomol. Chem., 2009, 7, 4391–4405; (f) T. X. Xiao, S. L. Li,
Y. J. Zhang, C. Lin, B. J. Hu, X. C. Guan, Y. H. Yu, J. L. Jiang
and L. Y. Wang, Chem. Sci., 2012, 3, 1417–1421.
2 C. J. Bruns and J. F. Stoddart, Top. Curr. Chem., 2012, 323, 19–72.
3 (a) R. A. Bissell, E. Cordova, A. E. Kaifer and J. F. Stoddart,
´
18 D. Philp, A. M. Z. Slawin, N. Spencer, J. F. Stoddart and
D. J. Williams, J. Chem. Soc., Chem. Commun., 1991, 22, 1584–1586.
19 The reaction times and yields for compound 5a–d were reported
previously in ref. 17, ref. 3b, ref. 5 and ref. 1b to be 2 days, 51%;
5 days, 23%; 10 days, 33%; and 2 days, 70%, respectively. Compounds
5a,b,d have also been synthesised under thermodynamic control in
´
good yields. See: O. S. Miljanic and J. F. Stoddart, Proc. Natl. Acad.
Sci. U. S. A., 2007, 104, 12966–12970.
20 C. J. Bruns, S. Basu and J. F. Stoddart, Tetrahedron Lett., 2010,
51, 983–986.
21 (a) S. Capobianchi, G. Doddi, G. Ercolani and P. Mencarelli,
J. Org. Chem., 1998, 63, 8088–8089; (b) C. D’Acerno, G. Doddi,
G. Ercolani and P. Mencarelli, Chem.–Eur. J., 2000, 6, 3540–3546;
(c) G. Doddi, G. Ercolani, P. Mencarelli and G. Papa, J. Org.
Chem., 2007, 72, 1503–1506.
Nature, 1994, 369, 133–137; (b) M. Asakawa, P. R. Ashton,
V. Balzani, A. Credi, C. Hamers, G. Mattersteig, M. Montalti,
A. N. Shipway, N. Spencer, J. F. Stoddart, M. S. Tolley,
M. Venturi, A. J. P. White and D. J. Williams, Angew. Chem., Int.
Ed., 1998, 37, 333–337; (c) E. R. Kay, D. A. Leigh and F. Zerbetto,
Angew. Chem., Int. Ed., 2007, 46, 72–191; (d) N. H. Evans,
C. J. Serpell and P. D. Beer, Chem.–Eur. J., 2011, 17, 7734–7738;
(e) A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart and
B. A. Grzybowski, Chem. Soc. Rev., 2012, 41, 19–30.
4 (a) C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly,
J. Sampaio, F. M. Raymo, J. F. Stoddart and J. R. Heath, Science,
2000, 289, 1172–1175; (b) J. E. Green, J. W. Choi, A. Boukai,
Y. Bunimovich, E. Johnston-Halprin, E. DeIonno, Y. Luo,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.