Z. Hua et al. / Bioorg. Med. Chem. Lett. 22 (2012) 5392–5395
5395
In summary, a class of 2-phenylamino-6-cyano-1H-benzimi-
dazoles was discovered as potent CK1 inhibitors with excellent
Route C:
H2N
c
HN
HO2C
N
N
a
broad kinase and CK1 isoform selectivity starting from a high-
throughput screen. SAR efforts delivered compound 1h, which dis-
played good cellular potency and modest pharmacokinetic proper-
ties in rodents. The structural and SAR information obtained from
this study should provide useful insights into the future design of
b
Cl
N
N
N
Br
Br
Br
16
17
18
N
other isoform selective CK1c inhibitors with requisite pharmacoki-
netic properties for pharmacodynamic studies.
HN
CN
N
c
d
Cl
N
Acknowledgments
CN
19
10
The authors would like to acknowledge Liyue Huang and Daniel
Waldon for PKDM support. We thank Margaret Chu-Moyer for her
support and helpful discussions.
Scheme 2. Synthesis of Imidazo[1,2-a]pyridine compound 10. Reagents and
conditions: (a) chloroacetic acid, TEA, CH3CN, 85 °C, 53%; (b) POCl3, CH3CN, 85 °C,
60%; (c) Pd(PPh3)4, Zn(CN)2, 90 °C, DMF, 77%; (d) Pd2(dba)3, Me4t-BuXPhos, Cs2CO3,
150 °C, t-BuOH, 10%.
References and notes
1. Knippschild, U.; Gocht, A.; Wolff, S.; Huber, N.; Lohler, J.; Stoter, M. Cell.
Signalling 2005, 17, 675.
of benzimidazole 1f, exhibited similar CK1c activity but signifi-
2. Liu, C.; Li, Y.; Semenov, M.; Han, C.; Baeg, G. H.; Tan, Y.; Zhang, Z.; Lin, X.; He, X.
Cell 2002, 108, 837.
cantly decreased cell potency.
The isoform selective CK1c inhibitor 1h emerged from the SAR
studies with promising cellular potency and lipophilic efficiency
3. (a) Peters, J. M.; McKay, R. M.; McKay, J. P.; Graff, J. M. Nature 1999, 401, 345; (b)
Sakanaka, C.; Leong, P.; Xu, L.; Harrison, S. D.; Williams, L. T. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 12548; (c) Swiatek, W.; Tsai, I. C.; Klimowski, L.; Pepler, A.;
Barnette, J.; Yost, H. J.; Virshup, D. M. J. Biol. Chem. 2004, 279, 13011.
4. (a) Brockschmidt, C.; Hirner, H.; Huber, N.; Eismann, T.; Hillenbrand, A.;
Giamas, G.; Radunsky, B.; Ammerpohl, O.; Bohm, B.; Henne-Bruns, D.; Kalthoff,
H.; Leithauser, F.; Trauzold, A.; Knippschild, U. Gut. 2008, 57, 799; (b) Kim, S. Y.;
Dunn, I. F.; Firestein, R.; Gupta, P.; Wardwell, L.; Repich, K.; Schinzel, A. C.;
Wittner, B.; Silver, S. J.; Root, D. E.; Boehm, J. S.; Ramaswamy, S.; Lander, E. S.;
Hahn, W. C. PLoS One 2010, 5, e8979.
and was therefore selected for further characterization. Compound
1h showed no inhibitory activity against an internal panel of 48 ki-
9
nases (>50 POC at 1
l
M) and was stable in both rat and human
liver microsomes (Clint <14 lL/min/mg). When dosed intrave-
nously in rat (0.5 mg/kg) compound 1h demonstrated moderate
clearance (1.3 L/h/kg) and half-life (1.5 h).17 However, high clear-
ance (14.4 L/h/kg) and short half-life (0.6 h) were observed when
dosed intravenously in mouse (1.5 mg/kg).
5. Davidson, G.; Wu, W.; Shen, J.; Bilic, J.; Fenger, U.; Stannek, P.; Glinka, A.;
Niehrs, C. Nature 2005, 438, 867.
6. Guo, X.; Waddell, D. S.; Wang, W.; Wang, Z.; Liberati, N. T.; Yong, S.; Liu, X.;
Wang, X. F. Oncogene 2008, 27, 7235.
The benzimidazole derivatives 1–7 were synthesized using two dif-
ferentapproachesshown in Scheme 1. Route Astartswith the synthesis
of arylisothiocyanates 12 prepared from the corresponding anilines 11
by reaction with thiophosgene in the presence of potassium carbonate.
In a one-pot transformation, the crude arylisothiocyanates 12 were
subsequently treated with 3,4-diaminobenzonitrile (13) in the pres-
ence of N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC) to
deliver the desired benzimidazole derivatives 1–7 in yields ranging
from35%to 50%fortwo steps.18 AnalternativesyntheticrouteB started
with the conversion of 3,4-diaminobenzonitrile (13) to benzimidazo-
lone 14 by using 1,10-carbonyldiimidazole as carbonylating reagent.
Chlorination of the benzimidazolone 14 with phosphorous oxychloride
provided the necessary 2-choloro-1H-benzimidzaole intermediate
15.19 Finally, microwave assisted coupling of 2-choloro-1H-ben-
zimidzaole 15 with desired anilines in the presence of methanesulfonic
acid gave benzimidazole derivatives 1 in 39–62% yield. Amination of 2-
chloro-6-cyanobenzoxazole and 2-chloro-6-cyanobenzothiazole with
4-(tert-butyl)aniline provided benzoxazole 8 and benzothiazole 9,
respectively (similar to route B for the synthesis of benzimidazoles).
The synthesis of imidazo[1,2-a]pyridine compound 10 is illus-
trated in Scheme 2. Reaction of 2-amino-5-bromo-pyridine 16 with
chloroacetic acid in the presence of triethylamine provided imino-
pyridine acetic acid 17 in good yield. Conversion of 17 to desired
2-chloro-6-bromo-imidazolpyridine (18) was accomplished by
treatment with phosphorous oxychloride in refluxing acetoni-
trile.20 Selective Pd-catalyzed cynation of intermediate 18 afforded
2-chloro-6-cyano-imidazolpyridine 19. Amination of 19 using
palladium-catalyzed coupling with 4-(tert-butyl)aniline provided
desired compound 10 in 10% unoptimized yield.
7. Thorne, C. A.; Hanson, A. J.; Schneider, J.; Tahinci, E.; Orton, D.; Cselenyi, C. S.;
Jernigan, K. K.; Meyers, K. C.; Hang, B. I.; Waterson, A. G.; Kim, K.; Melancon, B.;
Ghidu, V. P.; Sulikowski, G. A.; LaFleur, B.; Salic, A.; Lee, L. A.; Miller, D. M.; Lee,
E. Nat. Chem. Biol. 2010, 6, 829.
8. Cheong, J. K.; Nguyen, T. H.; Wang, H.; Tan, P.; Voorhoeve, P. M.; Lee, S. H.;
Virshup, D. M. Oncogene 2011, 30, 2558.
9. Kinase binding assay, POC =% of control.
10. Takahashi-Yanaga, F.; Sasaguri, T. J. Pharm. Sci. 2009, 109, 179.
11. The cellular assay is an MSD assay that uses a PO4-LRP5/6 specific antibody
(pThr1479) and
a total LRP6 specific antibody in LRP6 and CK1c2
overexpressing HEK-293 cells.
12. Atomic coordinates for the co-crystal structures of 1a and 1f have been
deposited in the RCSB with PDB codes 4G16 and 4G17, respectively.
13. All the biological data presented in this paper is an average of replicates.
14. Hopkins, A. L.; Groom, C. R.; Alex, A. Drug Discovery Today 2004, 9, 430.
15. Lesson, P. D.; Springthorpe, B. Nat. Rev. Drug Disc. 2007, 6, 881.
16. (a) Ryckmans, T.; Edwards, M. P.; Horne, V. A.; Correia, A. M.; Owen, D. R.;
Thompson, L. R.; Tran, I.; Tutt, M. F.; Young, T. Bioorg. Med. Chem. Lett. 2009, 19,
4406; (b) Cui, J. J.; Tran-Dube, M.; Shen, H.; Nambu, M.; Kung, P.-P.; Pairish, M.;
Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.;
Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.;
Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R. S.; Edwards, M. P. J.
Med. Chem. 2011, 54, 6342.
17. Compound 1f having similar potency but lower LipE to compound 1h
demonstrated high clearance (6.48 L/h/kg) when dosed intravenously in rat
(0.58 mg/kg).
18. Carpenter, R. D.; Andrei, M.; Lau, E. Y.; Lightstone, F. C.; Liu, R.; Lam, K. S.; Kurth,
M. J. J. Med. Chem. 2007, 50, 5863.
19. Ognyanov, V. I.; Balan, C.; Bannon, A. W.; Bo, Y.; Dominguez, C.; Fotsch, C.;
Gore, V. K.; Klionsky, L.; Ma, V. V.; Qian, Y -X.; Tamir, R.; Wang, X.; Xi, N.; Xu, S.;
Zhu, D.; Gavva, N. R.; Treanor, J. J. S.; Norman, M. H. J. Med. Chem. 2006, 49,
3719.
20. Bode, C.; Boezio, A.; Cheng, A. C.; Choquette, D.; Coats, J. R.; Copeland, K. W.;
Huang, H.; La, D.; Lewis, R.; Liao, H.; Potashman, M.; Stellwagen, J.; Yi, S.;
Norman, M.; Stec, M.; Peterson, E. A.; Graceffa, R. PCT. Int. Appl.
WO2010132598, 2010.