Organic Letters
Letter
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
Figure 6. Energetic spans in several catalytic systems. (a) Gibbs free
energy (kcal/mol). (b) Energetic span (kcal/mol). (c) Relative
turnover frequency normalized to the value for [FeCl2]+[FeCl4]−.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
imine molecules to form [AlCl2(1a)4]+[AlCl4]− as the initial
active species with decreased Lewis acidity. The reaction with
[RuCl2]+[RuCl4]− has a very low-lying TDI (CP3) that results
in a large δG (34.7 kcal/mol) and low relTOF. This is
essentially because the ruthenium(III) complex has a longer
metal−ligand bond than iron(III), and thus, a thermodynami-
cally stable five-coordination trigonal bipyramidal geometry
with less steric repulsion is preferred. We also found that the
reaction of the [FeCl2]+ catalyst without a counteranion has an
energetically high-lying TDTS leading to a high δG (40.6 kcal/
mol). Therefore, in the ion-paired complex [FeCl2]+[FeCl4]−,
both [FeCl2]+ and [FeCl4]− promote the reaction efficiently by
lowering the TDTS and also raising the TDI, respectively,
narrowing the δG in the catalytic cycle. Of note, second-order
perturbation theory analysis in NBO basis for donor−acceptor
orbital interactions corresponding to the TS1 of
[FeCl2]+[FeCl4]− catalysis shows only faint orbital interactions
between [FeCl4]− and the remainder of the reacting fragment
(Figure 5c), suggesting that a long-range electrostatic
interaction dominates over the short-range orbital interaction
for thermodynamic stabilization to realize the low-lying
activation energy of TS1 as TDTS.
This work was supported by ACT-C from the JST (Japan) and
Grants-in-Aid for Scientific Research (Nos. 18H04253,
17KT0006, 16K13951, and 15H03809) from MEXT
(Japan). T.K. acknowledges the Asahi Glass Foundation. We
are grateful to Prof. Tsunehiro Tanaka (Kyoto University),
Prof. Masaharu Nakamura (Kyoto University), Prof. Hikaru
Takaya (Kyoto University), Dr. Tetsuo Honma (JASRI; Japan
Synchrotron Radiation Research Institute), Dr. Hironori
Ofuchi (JASRI), Dr. Masafumi Takagaki (JASRI), and Mr.
Kyohei Fujiwara (Ajinomoto Co., Inc.) for valuable support in
the XAS analysis at the BL14B2 beamline of the SPring-8
synchrotron radiation facility (Proposal Nos. 2018B1594,
2018A1690, 2017B1748, 2017A1700, 2016B1766,
2016A1680, 2016A1549, 2015B1770).
REFERENCES
■
(1) (a) Zweig, J. E.; Kim, D. E.; Newhouse, T. R. Chem. Rev. 2017,
117, 11680−11752. (b) Bauer, I.; Knolker, H.-J. Chem. Rev. 2015,
115, 3170−3387.
(2) (a) Wakabayashi, R.; Kurahashi, T.; Matsubara, S. Org. Lett.
2012, 14, 4794−4797. (b) Hatanaka, Y.; Nantaku, S.; Nishimura, Y.;
Otsuka, T.; Sekikaw, T. Chem. Commun. 2017, 53, 8996−8999.
(3) (a) Swanson, T. B.; Laurie, V. W. J. Phys. Chem. 1965, 69, 244−
250. (b) Gamlen, G. A.; Jordan, D. O. J. Chem. Soc. 1953, 1435−
1443.
̈
In conclusion, we succeeded in developing a practical
catalyst for the aza-Diels−Alder reactions of nonactivated
dienes and imines using FeCl3, which forms the highly Lewis
(4) For representative examples, see: (a) Tobinaga, S.; Kotani, E. J.
Am. Chem. Soc. 1972, 94, 309−310. (b) Frazier, R. H., Jr.; Harlow, R.
L. J. Org. Chem. 1980, 45, 5408−5411. (c) Martin, C. L.; Overman, L.
E.; Rohde, J. M. J. Am. Chem. Soc. 2008, 130, 7568−7569. (d) Van
Humbeck, J. F.; Simonovich, S. P.; Knowles, R. R.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2010, 132, 10012−10014. (e) Tanaka, T.;
Hashiguchi, K.; Tanaka, T.; Yazaki, R.; Ohshima, T. ACS Catal. 2018,
8, 8430−8440.
(5) (a) Cook, D. Can. J. Chem. 1961, 39, 1184−1189. (b) Yasuda,
M.; Nakajima, H.; Takeda, R.; Yoshioka, S.; Yamasaki, S.; Chiba, K.;
Baba, A. Chem. - Eur. J. 2011, 17, 3856−3867.
(6) Westre, T. E.; Kennepohl, P.; de Witt, J. G.; Hedman, B.;
Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 1997, 119, 6297−
6314.
(7) (a) Pieniazek, S. N.; Clemente, F. R.; Houk, K. N. Angew. Chem.,
Int. Ed. 2008, 47, 7746−7749. (b) Beno, B. R.; Houk, K. N.;
Singleton, D. A. J. Am. Chem. Soc. 1996, 118, 9984−9985.
(8) (a) Baba, H.; Suzuki, S.; Takemura, T. J. Chem. Phys. 1969, 50,
2078−2086. (b) Fujimoto, H.; Kato, S.; Yamabe, S.; Fukui, K. J.
Chem. Phys. 1974, 60, 572−578. (c) Dapprich, S.; Frenking, G. J.
Phys. Chem. 1995, 99, 9352−9362.
(9) Kozuch, S.; Shaik, S. Acc. Chem. Res. 2011, 44, 101−110.
(10) Means, N. C.; Means, C. M.; Bott, S. G.; Atwood, J. L. Inorg.
Chem. 1987, 26, 1466.
+
acidic FeCl2 and thermodynamically stable FeCl4− that act as
the ion-paired catalyst [FeCl2]+[FeCl4]− after in situ
disproportionation upon imine coordination. The dispropor-
tionation was confirmed spectroscopically, and the catalytic
cycle was analyzed theoretically. The high TOF reactivity of
the catalyst was rationalized with the energetic span model;
[FeCl2]+[FeCl4]− realizes both a low-energy TOF-determining
transition state (TDTS) and a high-energy TOF-determining
intermediate (TDI). The obtained fundamental understanding
of this first-row transition metal Lewis acid catalyst will provide
new ideas for promoting catalytic reactions with high TOFs in
other reactions. Asymmetric Lewis acid catalyzed reactions
with high TOFs as a practical organic synthetic method should
also be realizable; these studies are currently under
investigation in our laboratory.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures; spectroscopic and analytical
data for new compounds (PDF)
D
Org. Lett. XXXX, XXX, XXX−XXX