S. Singh, L.D.S. Yadav / Tetrahedron Letters 53 (2012) 5136–5140
5139
8. (a) Davis, A. P.; Walsh, J. J. Tetrahedron Lett. 1994, 35, 4865; (b) Davis, A. P.;
Menzer, S.; Walsh, J. J.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1996, 453.
9. (a) Villalobos, J. M.; Srogl, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 15734;
(b) Prokopcova, H.; Pisani, L.; Kappe, C. O. Synlett 2007, 43; (c) Morita, A.;
Kuwahara, S. Org. Lett. 2004, 8, 1613; (d) Lengar, A.; Kappe, C. O. Org. Lett. 2004,
6, 771; (e) Alphonse, F. A.; Suzenet, F.; Keromnes, A.; Lebert, B.; Guillaumet, G.
Synlett 2002, 3, 447.
10. Bjorn, H. T.; Ben, F. L.; Adriaan, M. J. Chem. Commun. 2007, 5, 489.
11. (a) Metzner, P.; Thuillier, A. Sulfur Reagents in Organic Synthesis; Academic
Press: New York, 1994; (b) Nudelman, A. The Chemistry of Optically Active Sulfur
Compoundsm; Gordon and Breach: New York, 1984; (c) Chatgilialoglu, C.;
Asmus, K. D. Sulfur-Centered Reactive Intermediates in Chemistry and Biology;
Springer: New York, 1991.
in terms of yield was THF (Table 2, entry 8) and we used it through-
out the present study. It was also noted that a higher reaction tem-
perature, for example, in a refluxing solvent instead of room
temperature did not increase the yield.
We applied the optimized conditions to the reaction of different
substituted aldehydes and enals with a wide range of disulfides to
produce the desired thioesters in good to excellent yields (Table 3).
The presence of an electron-withdrawing substituent on the aryl
moiety of aldehydes, enals, or disulfides appears to enhance the
yield (Table 3, entries 3, 5, 6, 8, and 14), whereas an electron-
donating group seems to reduce the yield (Table 3, entries 4, 9,
11, and 15). Besides the aromatic enals, we also attempted the
reaction using aliphatic enals such as crotonaldehyde, but yields
were low (66–69%) in these cases. Furthermore, we also attempted
the reaction using aliphatic aldehydes such as, acetaldehyde, and
propionaldehyde, but the yields were poor (10–20%) in these cases.
This might be due to the side reaction like aldol reaction under the
present basic conditions.
12. (a) Stindl, A.; Keller, U. J. Biol. Chem. 1993, 268, 10612; (b) Dittmann, J.; Wenger,
R. M.; Kleinkauf, H.; Lawen, A. J. Biol. Chem. 1994, 269, 2841; (c) Stachelhaus, T.;
Huser, A.; Marahiel, M. A. Chem. Biol. 1996, 3, 913.
13. (a) Bandgar, B. P.; More, P. E.; Kamble, V. T.; Sawant, S. S. Aust. J. Chem. 2008, 61,
1006; (b) Iranpoor, N.; Firouzabadi, H.; Khalili, D.; Motevalli, S. J. Org. Chem.
2008, 73, 4882; (c) Katritzky, A. R.; Shestopalov, A. A.; Suzuki, K. Synthesis 2004,
1806; (d) Yamada, S. I.; Yokoyama, Y.; Shioiri, T. J. Org. Chem. 1974, 39, 3302; (e)
Kadam, S. T.; Kim, S. S. Synthesis 2008, 3307; (g) Jeyakumar, K.; Chand, D. K. J.
Mol. Catal. A: Chem. 2006, 255, 275; (h) Chakraborti, A.; Shivani, K. J. Org. Chem.
2006, 71, 5785; (i) Firouzabadi, H.; Iranpoor, N.; Farahi, S. J. Mol. Catal. A: Chem.
2008, 289, 61; (j) Ranu, B. C.; Jana, R. Adv. Synth. Catal. 2005, 347, 1811; (k) Uno,
T.; Inokuma, T.; Takemoto, Y. Chem. Commun. 2012, 48, 1901.
A possible catalytic cycle of the NHC-catalyzed reaction is de-
picted in Scheme 2. The addition of the NHC to aldehyde 1 gives
intermediate 8 followed by H-migration to produce an acyl anion
equivalent (Breslow intermediate) 9 which reacts with disulfide
2 to form the desired product thioester 4 and thiophenoxide ion
which further oxidize into disulfide 2 by DEAD (Scheme 2). Simi-
larly, enals 10 also react with disulfide 2 through the Breslow inter-
14. Cao, H.; McNamee, L.; Alper, H. J. Org. Chem. 2008, 73, 3530.
15. (a) Peppe, C.; Castro, L. B. D. Can. J. Chem. 2009, 87, 678; (b) Ranu, B. C.; Mandal,
T. J. Org. Chem. 2004, 69, 5793; (c) Chen, R. E.; Zhang, Y. M. Synth. Commun.
1999, 29, 3699; (d) Chowdhury, S.; Roy, S. Tetrahedron Lett. 1997, 38, 2149; (e)
Wang, X. X.; Zou, X. F.; Du, J. X. J. Chem. Res. Synop. 2006, 64; (f) Patra, P. K.;
Shanmugasundaram, K.; Matoba, M.; Nishide, K.; Kajimoto, T.; Node, M.
Synthesis 2005, 447; (g) Bao, W. L.; Zhang, Y. M. Synth. Commun. 1995, 25, 143;
(h) Jia, X. S.; Zhang, Y. M. J. Chem. Res. Synop. 2003, 9, 540; (i) Wu, H. Y.; Chen, R.
E.; Zhang, Y. M. Chin. Chem. Lett. 1999, 10, 899; (j) Lakouraj, M. M.; Movassagh,
B.; Fadaei, Z. Monatsh. Chem. 2002, 133, 1085; (k) Movassagh, B.; Lakouraj, M.
M.; Fadaei, Z. J. Chem. Res., Synop. 2001, 22; (l) Tian, F. S.; Zhu, Y. M.; Zhang, S. L.;
Wang, Y. L. J. Chem. Res., Synop. 2002, 11, 582; (m) Chen, C. T.; Kuo, J. H.; Li, C.
H.; Barhate, N. B.; Hon, S. W.; Li, T. W.; Chao, S. D.; Liu, C. C.; Li, Y. C.; Chang, I.
H.; Lin, J. S.; Liu, C. J.; Chou, Y. C. Org. Lett. 2001, 3, 3729; (n) Ajiki, K.; Hirano,
M.; Tanaka, K. Org. Lett. 2005, 7, 4193.
16. Arisawa, M.; Kubota, T.; Yamaguchi, M. Tetrahedron Lett. 1975, 2008, 49.
17. (a) Nambu, H.; Hata, K.; Matsugi, M.; Kita, Y. Chem. Commun. 2002, 1082; (b)
Bandgar, S. B.; Bandgar, B. P.; Korbad, B. L.; Sawant, S. S. Tetrahedron Lett. 2007,
48, 1287; (c) Sohn, S. S.; Bode, J. W. Angew. Chem., Int. Ed. 2006, 45, 6021.
18. Reviews of NHC-catalyzed reactions: (a) Mahatthananchai, J.; Bode, J. W. Chem.
Sci. 2012, 3, 192; (b) Vora, H. U.; Rovis, T. Aldrichimica Acta 2011, 44, 3; (c) Biju,
A.; Kuhl, N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182; (d) Zeitler, K. Angew.
Chem., Int. Ed. 2005, 44, 7506; (e) Enders, D.; Niemeier, O.; Henseler, A. Chem.
Rev. 2007, 107, 5606.
19. (a) Enders, D.; Kallfass, U. Angew. Chem., Int. Ed. 2002, 41, 1743; (b) Kerr, M. S.;
de Alaniz, J. R.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298; (c) Chow, K. Y. K.;
Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8216; (d) Reynold, N. T.; de Alaniz, J. R.;
Rovis, T. J. Am. Chem. Soc. 2004, 126, 9518; (e) Myers, M. C.; Bharadwaj, A. R.;
Milgram, B. C.; Scheidt, K. A. J. Am. Chem. Soc. 2005, 127, 14675.
20. (a) Burstein, C.; Glorius, F. Angew. Chem. Int. Ed. 2004, 43, 6205; (b) Sohn, S. S.;
Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370; (c) Chan, A.; Scheidt,
K. A. Org. Lett. 2005, 7, 905; (d) Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E. J.
Am. Chem. Soc. 2006, 128, 8736; (e) Chiang, P. C.; Kaeobamrung, J.; Bode, J. W. J.
Am. Chem. Soc. 2007, 129, 3520; (f) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc.
2008, 130, 2740.
mediate 70 (d1 nucleophile) to afford
a
,b-unsaturated thioester 40.
To our delight, the NHC 3a mediated reaction of enals 10 with disul-
fide 2 proceeded well via acyl anion to afford a,b-unsaturated thi-
oester 40 in good to excellent yields (Table 3) without the
formation of any appreciable amount of the product through the
homoenolate (d3 nucleophile) of 10.
In conclusion, we have developed a convenient, efficient, and
one-pot route for the synthesis of thioesters and
a,b-unsaturated
thioesters via direct NHC-catalyzed nucleophilic acylation of disul-
fides with aromatic aldehydes and enals in good to excellent yields.
The method benefits from the use of cheap and safe starting mate-
rials and avoids the use of very unpleasant and noxious thiols as
well as corrosive acid chlorides in the course of reaction. This is
the first NHC-catalyzed intermolecular acylation reaction of disul-
fides. This protocol allows the transformation of aldedydes and en-
als to a range of thioesters and
same procedure.
a,b-unsaturated thioesters by the
Acknowledgments
We sincerely thank SAIF, Punjab University, Chandigarh, for
providing microanalyses and spectra. S.S. is grateful to the CSIR,
New Delhi, for the award of a Research Associateship (CSIR File
No. 09/001/(0358)/2012/EMR-I).
21. (a) Grasa, G. A.; Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4, 3583; (b) Nyce, G.
W.; Lamboy, J. A.; Connor, E. F.; Waymouth, R. M.; Hedrick, J. L. Org. Lett. 2002,
4, 3587.
22. (a) He, J.; Zheng, J.; Liu, J.; She, X.; Pan, X. Org. Lett. 2006, 8, 463; (b) Suzuki, Y.;
Ota, S.; Fukuta, Y.; Ueda, Y.; Sato, M. J. Org. Chem. 2008, 73, 2420.
23. (a) Suzuki, Y.; Toyota, T.; Miyashita, A.; Sato, M. Chem. Pharm. Bull. 2006, 54,
1653; (b) Miyashita, A.; Matsuda, H.; Iijima, C.; Higashino, T. Chem. Pharm. Bull.
1990, 38, 1147.
References and notes
24. He, J.; Zheng, J.; Liu, J.; She, X.; Pan, X. Org. Lett. 2006, 8, 4637.
25. Lin, L.; Li, Y.; Du, W.; Deng, W. P. Tetrahedron Lett. 2010, 51, 3571.
26. Singh, S.; Singh, P.; Rai, V. K.; Yadav, L. D. S. Tetrahedron Lett. 2011, 52, 125.
27. (a) Singh, S.; Yadav, L. D. S. Org. Biomol. Chem. 2012, 10, 3932; (b) Yadav, L. D. S.;
Singh, S.; Rai, V. K. Synlett 2010, 240; (c) Yadav, L. D. S.; Rai, V. K.; Singh, S.;
Singh, P. Tetrahedron Lett. 2010, 51, 1657; (d) Patel, R.; Srivastava, V. P.; Yadav,
L. D. S. Adv. Synth. Catal. 2010, 352, 1610; (e) Yadav, L. D. S.; Singh, S.; Rai, V. K.
Green Chem. 2009, 11, 878.
1. Field, L. Synthesis 1972, 101, 6321.
2. Mukaiyama, T.; Araki, M.; Takei, H. J. Am. Chem. Soc. 1973, 95, 4763.
3. (a) Alvarez-Ibarra, C.; Mendoza, M.; Orellana, G.; Quiroga, M. L. Synthesis 1989,
560; (b) Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F. Tetrahedron Lett.
1995, 36, 613.
4. (a) Mukaiyama, T.; Uchiro, H.; Shiina, I.; Kobayashi, S. Chem. Lett. 1990, 1019;
(b) Kobayashi, S.; Uchiro, H.; Fujishita, Y.; Shiina, I.; Mukaiyama, T. J. Am. Chem.
Soc. 1991, 113, 4247.
5. Christian, F.; Bjorn, S.; Andreas, T. Eur. J. Org. Chem. 2007, 6, 1013.
6. (a) Ficht, S.; Payne, R. J.; Guy, R. T.; Wong, C. H. Eur. J. Org. Chem. 2008, 14, 3620;
(b) Hojo, H.; Aimoto, S. Bull. Chem. Soc. Jpn. 1991, 64, 111; (c) Ozawa, C.;
Katayama, H.; Hojo, H.; Yuko, N.; Yoshiaki, N. Org. Lett. 2008, 10, 3531; (d)
Dawson, P. E.; Muir, T. W.; Lewis, C. I.; Kent, S. B. H. Science 1994, 266, 776; (e)
Dawson, P. E.; Kent, S. B. H. Annu. Rev. Biochem. 2000, 69, 923.
7. (a) McGarvey, G. J.; Williams, J. M.; Hiner, R. N.; Matsubara, Y.; Oh, T. J. Am.
Chem Soc. 1986, 108, 4943; (b) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000,
122, 11260.
28. General procedure for the synthesis of thioesters 4 and 40: A flame-dried round
bottomed flask was charged with benzimidazolium salt 3a (0.3 mmol),
aldehyde
1 2 (0.5 mmol), oxidant DEAD
or 10 (1.0 mmol), disulfide
(1.2 mmol) and 5 mL of THF under positive pressure of nitrogen followed by
addition of DBU (0.3 mmol) with a syringe. The resulting solution was stirred
for 11–16 h at room temperature (Table 3). After completion of the reaction
(monitored by TLC), the reaction mixture was concentrated under reduced
pressure. The residue was purified by silica gel column chromatography using
hexane/EtOAc; (20:1) as eluent to afford analytically pure
4
and 40.
Characterization data of representative compounds. Compound 4a: The 1H