(step 1 in Scheme S1, ESIw), and then a silicon electrophile
stabilized on TBA2WO4 is possibly formed (step 2 in Scheme S1,
ESIw). In the dehydrosilylation of alcohols with hydrosilanes
using Rh2(pfb)4 (analogue of Rh2(OAc)4), the reaction mechanism
of the coordination (not oxidative addition) of Si–H bonds to the
Rh sites for backside nucleophilic attack by alcohols has been
proposed.16 In addition, it has been reported that a silicon
electrophile can be stabilized on polyoxotungstates.17
2 (a) M. Negwer, Organic-Chemical Drugs and Their Synonyms: An
International Survey, Akademic Verlag, Berlin, 1994;
(b) P. N. Craig, in Comprehensive Medicinal Chemistry,
ed. C. J. Drayton, Pergamon, New York, 1991, vol. 8;
(c) A. K. Franz, Curr. Opin. Drug Discovery Dev., 2007, 10, 654.
3 (a) R. Dalpozzo and G. Bartoli, Curr. Org. Synth., 2005, 9, 163;
(b) S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105, 2873;
(c) G. R. Humphrey and J. T. Kuethe, Chem. Rev., 2006,
106, 2875; (d) G. W. Gribble, Pure Appl. Chem., 2003, 75, 1417;
(e) S. Agarwal, S. Cammerer, S. Filali, W. Froohner, J. Knoll,
¨
¨
M. P. Krahl, K. R. Reddy and H.-J. Knolker, Curr. Org. Chem.,
¨
¨
1
The H NMR spectrum of 1a in acetonitrile-d3 showed the
2005, 9, 1601; (f) L. Joucla and L. Djakovitch, Adv. Synth. Catal.,
2009, 351, 673; (g) G. Sartori and R. Maggi, Chem. Rev., 2006,
106, 1077; (h) M. Bandini and A. Eichholzer, Angew. Chem., Int.
Ed., 2009, 48, 9608.
signal of the NH proton at 9.4 ppm (Fig. S3a, ESIw). A
significant downfield shift (from 9.4 ppm to 13.6 ppm) was
observed upon addition of one equivalent of TBA2WO4 with
respect to 1a (Fig. S3b, ESIw). These results indicate the
hydrogen-bonding interaction between TBA2WO4 and 1a
that could weaken the N–H bond of 1a and facilitate the
electrophilic attack of activated hydrosilanes on the nitrogen
atom of 1a. In contrast, significant downfield shifts of the NH
proton of 1a were not observed with N-donor bases such as
triethylamine and DBU. Thus, these bases were not effective for
the present Rh2(OAc)4-catalyzed N-silylation, as mentioned
above (Table S3, ESIw).
Therefore, both activated hydrosilanes and indoles likely
co-existed on the TBA2WO4 molecules, resulting in efficient
promotion of the present N-silylation (step 3 in Scheme S1,
ESIw). Acetonitrile (solvent) also takes part in the catalytic
cycle; rhodium species and bases are regenerated by the
hydrogenation of acetonitrile (step 4 in Scheme S1, ESIw),z
and the catalytic cycle is complete. The present Rh2(OAc)4/
base-catalyzed N-silylation of indoles with hydrosilanes
likely proceeds via the ionic silylation mechanism shown in
Scheme S1 (ESIw). In the hydrosilylation of ketones, a similar
ionic hydrosilylation mechanism has been proposed.18
This work was supported in part by Grants-in-Aid for
Scientific Researches from the Ministry of Education, Culture,
Sports, Science and Technology of Japan.
4 (a) R. J. Sundberg, The Chemistry of Indoles, Academic Press, New
York, 1970; (b) H.-J. Borschberg, Curr. Org. Chem., 2005, 9, 1465.
5 (a) C.-G. Yang, G. Liu and B. Jiang, J. Org. Chem., 2002, 67, 9392;
(b) A. B. Smith III and H. Cui, Org. Lett., 2003, 5, 587; (c) M. Kim
and E. Vedejs, J. Org. Chem., 2004, 69, 7262; (d) K. R. Buszek,
N. Brown and D. Luo, Org. Lett., 2009, 11, 201; (e) D. A. Brown,
M. Mishra, S. Zhang, S. Biswas, I. Parrington, T. Antonio, M. E.
A. Reith and A. K. Dutta, Bioorg. Med. Chem., 2009, 17, 3923;
(f) G.-Y. J. Im, S. M. Bronner, A. E. Goetz, R. S. Paton, P. H.-Y.
Cheong, K. N. Houk and N. K. Garg, J. Am. Chem. Soc., 2010,
132, 17933; (g) D. S. Carter, H.-Y. Cai, E. K. Lee, P. S. Iyer,
M. C. Lucas, R. Roetz, R. C. Schoenfeld and R. J. Weikert,
Bioorg. Med. Chem. Lett., 2010, 20, 3941.
6 D. W. Robbins, T. A. Boebel and J. F. Hartwig, J. Am. Chem.
Soc., 2010, 132, 4068.
7 (a) D. Dhanak and C. B. Reese, J. Chem. Soc., Perkin. Trans. 1,
1986, 2181; (b) J. Poisson, I. Wharf, D. S. Bohle, M. M. Barsan,
Y. Gu and I. S. Butler, J. Organomet. Chem., 2010, 695, 2557.
8 (a) J. A. Reichl and D. H. Berry, Adv. Organomet. Chem., 1998,
43, 197; (b) Z. Rappaport and Y. Apeloig, The Chemistry of Organic
Silicon Compounds, vol. 2, Wiley, New York, 1998; (c) F. Kakiuchi
and N. Chatani, Adv. Synth. Catal., 2003, 345, 1077; (d) F. Kakiuchi,
M. Matsumoto, K. Tsuchiya, K. Igi, T. Hayamizu, N. Chatani and
S. Murai, J. Organomet. Chem., 2003, 686, 134; (e) F. Kakiuchi,
K. Tsuchiya, M. Matsumoto, E. Mizushima and N. Chatani, J. Am.
Chem. Soc., 2004, 126, 12792.
9 B. Lu and J. R. Falck, Angew. Chem., Int. Ed., 2008, 47, 7508.
10 H. F. T. Klare, M. Oestreich, J. Ito, H. Nishiyama, Y. Ohki and
K. Tatsumi, J. Am. Chem. Soc., 2011, 133, 3312.
11 T. Tsuchimoto, Y. Iketani and M. Sekine, Chem.–Eur. J., 2012,
18, 9500.
12 (a) D. M. Gutsulyak, S. F. Vyboishchikov and G. I. Nikonov,
J. Am. Chem. Soc., 2010, 132, 5950; (b) J. F. Dunne, S. R. Neal,
J. Engelkemier, A. Ellern and A. D. Sadow, J. Am. Chem. Soc.,
2011, 133, 16782; (c) L. H. Sommer and J. D. Citron, J. Org.
Chem., 1967, 32, 2470; (d) J. X. Wang, A. K. Dash, J. C. Berthet,
M. Ephritikhine and M. S. Eisen, J. Organomet. Chem., 2000,
610, 49; (e) W.-D. Wang and R. Eisenberg, Organometallics, 1991,
10, 2222; (f) H. Q. Liu and J. F. Harrod, Organometallics, 1992,
11, 822.
13 T. Kimura, K. Kamata and N. Mizuno, Angew. Chem., Int. Ed.,
2012, 51, 6700.
14 (a) Y. Ojima, K. Yamaguchi and N. Mizuno, Adv. Synth. Catal.,
2009, 351, 1405; (b) R. J. P. Corriu and J. J. E. Moreau,
J. Organomet. Chem., 1976, 114, 135.
Notes and references
z During the review process of this manuscript, Tsuchimoto and
co-workers have reported the efficient zinc-catalyzed N-silylation of
indoles with hydrosilanes in the presence of nitrogen bases.11
y In the CSI-MS as well as 1H and 29Si NMR spectra of Rh2(OAc)4
(25 mM) and 2a (10 mM) in acetonitrile, no signals due to the
corresponding silyl metal hydride species were detected. Rh(PPh3)3Cl
and [RuCl2(p-cymene)]2, which are well known to form silyl metal
hydride species by oxidative addition of hydrosilanes,14 were not
effective for the N-silylation. Thus, the oxidative addition mechanism
can likely be excluded for the present N-silylation.
z During the present N-silylation, dimethylphenylsilylethylamine
formed as a co-product in all cases, which likely formed through the
hydrogenation of acetonitrile followed by hydrosilylation. For example,
dimethylphenylsilylethylamine formed in 95% yield (based on 1a)
during the N-silylation of 1a with 2a under the conditions described
in Table 2. Although silylamines formed from nitriles (solvents) as
co-products during the present N-silylation of indoles, silylamines can
be further converted into the corresponding primary amines by simple
hydrolysis.
15 (a) I. Ojima, M. Nihonyanagi and Y. Nagai, J. Chem. Soc., Chem.
Commun., 1972, 938; (b) B. Marciniec, Silicon Chem., 2002, 1, 155;
(c) S. Dıez-Gonzalez and S. P. Nolan, Org. Prep. Proced. Int.,
´ ´
2007, 39, 523.
16 M. P. Doyle, K. G. High, V. Bagheri, R. J. Pieters, P. J. Lewis and
M. M. Pearson, J. Org. Chem., 1990, 55, 6082.
17 E. Grinenval, J.-M. Basset and F. Lefebvre, Inorg. Chem., 2010,
49, 8749.
18 (a) V. K. Dioumaev and R. M. Bullock, Nature, 2003, 424, 530;
(b) G. Du, P. E. Fanwick and M. M. Abu-Omar, J. Am. Chem.
Soc., 2007, 129, 5180; (c) D. V. Gutsulyak, S. F. Vyboishchikov
and G. I. Nikonov, J. Am. Chem. Soc., 2010, 132, 5950.
1 (a) S. E. Denmark and R. F. Sweis, in Metal-Catalyzed Cross-
Coupling Reactions, ed. A. D. Meijere and F. Diederich, Wiley,
Weinheim, 2004, vol. 1, pp. 163–216; (b) N. Miyaura and A. Suzuki,
Chem. Rev., 1995, 95, 7; (c) K. Hirabayashi, J. Kawashima,
Y. Nishihara, A. Mori and T. Hiyama, Org. Lett., 1999, 1, 299.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 9269–9271 9271