heterocyclization). In addition, the protocol could provide a
simple, efficient method to synthesize 2-acylbenzathiazoles, in
which a metal, base, and ligand are needless. Further studies
on the applications of this strategy will be reported in due
course.
We thank the National Natural Science Foundation of
China (Grant 21032001) and PCSIRT (No. IRT0953).
Notes and references
1 (a) C. G. Jia, T. Kitamura and Y. Fujiwara, Acc. Chem. Res., 2001,
34, 633; (b) F. Kakiuchi and S. Murai, Acc. Chem. Res., 2002,
34, 826; (c) K. Godula and D. Sames, Science, 2006, 312, 67;
(d) T. A. Ramirez, B. G. Zhao and Y. Shi, Chem. Soc. Rev., 2012,
41, 931.
2 (a) M. Uyanik, H. Okamoto, T. Yasui and K. Ishihara,
Science, 2010, 328, 1376; (b) M. Uyanik, D. Suzuki, T. Yasui
and K. Ishihara, Angew. Chem., Int. Ed., 2011, 50, 5331;
(c) M. Uyanik and K. Ishihara, Chim. Oggi, 2011, 29, 18;
(d) M. Uyanik and K. Ishihara, ChemCatChem, 2011, 4, 177.
3 (a) T. Froehr, C. P. Sindlinger, U. Kloeckner, P. Finkbeiner and
B. J. Nachtsheim, Org. Lett., 2011, 13, 3754; (b) U. Kloeckner,
N. M. Weckenmann and B. J. Nachtsheim, Synlett, 2012, 23, 97.
4 L. J. Ma, X. P. Wang, W. Yu and B. Han, Chem. Commun., 2011,
47, 11333.
Fig. 2 The reaction process of 1a (0.1 mmol) with I2 (0.12 mmol) was
monitored by 1H NMR (600 MHz, DMSO-d6, 298 +/ꢀ0.5 K) over
time.
5 (a) W. Wei, C. Zhang, Y. Xu and X. B. Wan, Chem. Commun.,
2011, 47, 10827; (b) L. Chen, E. B. Shi, Z. J. Liu, S. L. Chen,
W. Wei, H. Li, K. Xu and X. B. Wan, Chem.–Eur. J., 2011,
17, 4085; (c) Z. J. Liu, J. Zhang, S. L. Chen, E. B. Shi, Y. Xu and
X. B. Wan, Angew. Chem., Int. Ed., 2012, 51, 3231; (d) E. B. Shi,
Y. Shao, S. L. Chen, H. Y. Hu, Z. J. Liu, J. Zhang and X. B. Wan,
Org. Lett., 2012, 14, 3384.
Scheme 1 The plausible mechanism of the present reaction.
6 J. Xie, H. L. Jiang, Y. X. Cheng and C. J. Zhu, Chem. Commun.,
2012, 48, 979.
7 (a) C. F. Wan, J. T. Zhang, S. J. Wang, J. M. Fan and Z. Y. Wang,
Org. Lett., 2010, 12, 2338; (b) J. T. Zhang, D. P. Zhu, C. M. Yu,
C. F. Wan and Z. Y. Wang, Org. Lett., 2010, 12, 2841;
(c) C. F. Wan, L. F. Gao, Q. Wang, J. T. Zhang and
Z. Y. Wang, Org. Lett., 2010, 12, 3902; (d) Y. Z. Yang and
Z. Y. Wang, Chem. Commun., 2011, 47, 9513; (e) Q. Wang,
C. F. Wan, Y. Gu, J. T. Zhang, L. F. Gao and Z. Y. Wang, Green
Chem., 2011, 13, 578.
assigned to the –CH2– group of a-iodo aryl methyl ketone 1aa
at 2–10 mins (Fig. 2). In addition, the signals at 9.55 ppm
and 5.70 ppm were assigned to the phenylglyoxal aldehyde
group (1ac) and the hemiacetal group (1ab). With the
consumption of 1a, the intermediate 1ab and 1ac appeared
and the concentration subsequently increased over time.
Cocconcelli et al. had previously investigated the assignment
and equilibrium between the aldehyde forms of phenylglyoxal
8 H. F. Jiang, H. W. Huang, H. Cao and C. R. Qi, Org. Lett., 2010,
12, 5561.
1
9 M. Lamani and K. R. Prabhu, J. Org. Chem., 2011, 76, 7938.
10 X. B. Zhang and L. Wang, Green Chem., 2012, 14, 2141.
11 (a) D. A. Horton, G. T. Bourne and M. L. Smythe, Chem. Rev.,
2003, 103, 893; (b) K. Bahrami, M. M. Khodaei and F. Naali,
J. Org. Chem., 2008, 73, 6835.
1ab and the hydrated hemiacetal 1ac via H NMR spectra.13
These results disclosed that phenacyl iodine (1aa) and
phenylglyoxal (1ac) were important intermediates in the whole
transformation.
12 (a) X. L. Yang, C. M. Xu, S. M. Lin, J. X. Chen, J. C. Ding,
H. Y. Wu and W. K. Su, J. Braz. Chem. Soc., 2010, 21, 37;
(b) J. Hyvl and J. Srogl, Eur. J. Org. Chem., 2010, 2849;
(c) X. S. Fan, Y. He, Y. Y. Wang, Z. K. Xue, X. Y. Zhang and
J. J. Wang, Tetrahedron Lett., 2011, 52, 899; (d) A. Shokrolahi,
A. Zali and M. Mahdavi, Phosphorus, Sulfur Silicon Relat. Elem.,
2012, 187, 535.
13 V. Zuliani, G. Cocconclli, M. Fantini, C. Ghiron and M. Rivara,
J. Org. Chem., 2007, 72, 4551.
14 G. D. Yin, M. Gao, N. F. She, S. L. Hu, A.-X. Wu and Y. J. Pan,
Synthesis, 2007, 20, 3113.
15 (a) N. Kornblum, J. W. Powers, G. J. Anderson, W. J. Jones,
H. O. Larson, O. Levand and W. M. Weaver, J. Am. Chem. Soc.,
1957, 79, 6562; (b) G. D. Yin, B. H. Zhou, X. G. Meng, A. X. Wu
and Y. J. Pan, Org. Lett., 2006, 8, 2245; (c) Y. P. Zhu, M. C. Liu,
F. C. Jia, J. J. Yuan, M. Lian, Q. H. Gao and A. X. Wu, Org. Lett.,
2012, 14, 3392; (d) W. J. Xue, Q. Li, Y. P. Zhu, J. G. Wang and
A. X. Wu, Chem. Commun., 2012, 48, 3485.
A possible reaction mechanism is described as follows
using acetophenone (1a) and 2-aminobenzenethiol (2a) as an
example (Scheme 1). Initially, the acetophenone 1a was
converted to 1aa in the media of I2.14 Subsequently, it further
converted into phenylglyoxal (1ac) in the presence of
DMSO.15 Finally, phenylglyoxal (1ac) reacted with 2a via
condensation, Michael addition and oxidative dehydrogenation
sequences to afford the desired product 3a in the presence of the
excess or regenerated iodide.16 In the process, byproduct HI
could be oxidized by DMSO to regenerate at least 0.5 equiv of
iodine (eqn (1)).17
In conclusion, an I2 promoted domino protocol has been
developed to construct 2-acylbenzothiazoles from simple
and readily available aromatic ketones/unsaturated methyl
ketones and o-aminobenzenethiols. Mechanistic investigation
disclosed that the transformation contained three mechanistically-
different reactions (iodination, Kornblum oxidation, and
16 M. Ishihara and H. Togo, Synlett, 2006, 2, 227.
17 M. Gao, Y. Yang, Y. D. Wu, C. Deng, W. M. Shu, D. X.
Zhang, L. P. Cao, N. F. She and A. X. Wu, Org. Lett., 2010,
12, 4026.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.