270 Sivamurugan et al.
[13] Breitenbucher, J. G.; Figliozzi, G. Tetrahedron Lett
2000, 41, 4311.
[14] Ohberg, L.; Westman, J. Synlett 2001, 1296.
[15] Anderson, G. J.; Berkelhammer, G. J Am Chem Soc
1958, 80, 992.
[16] Phillips, P. J Am Chem Soc 1949, 71, 4003.
[17] Maeyence, A. M.; Eynde, J.-J. V. Tetrahedron Lett
1991, 32, 3839.
[18] Sabitha, G.; Reddy, G. S. K. K.; Reddy, Ch. S.; Yadav,
J. S. Tetrahedron Lett 2003, 44, 4129.
maximum yield of the expected product could be
obtained within short reaction time. Medium and
high microwave power gave low yield, which may be
due to rapid heating of reaction medium that cause
evaporation of solvent medium and lead to precip-
itation of unreacted compounds. The results have
proved that the present investigation is a new green
protocol for the preparation of 1,4-DHPs by utilizing
low microwave power.
[19] Yadav, J. S.; Reddy, B. V. S.; Reddy, P. T. Synth
Commun 2001, 31, 425.
[20] Anniyappan, M.; Muralidharan, D.; Perumal, P. T.
Synth Commun 2002, 32, 659.
[21] Balalaie, S.; Kowsari, E. Monatsh Chem 2001, 132,
1551.
CONCLUSIONS
Zn[(L)proline]2 complex is proved to be an effi-
cient catalyst for the preparation of 1,4-DHP deriva-
tives using Hantzsch synthetic route in aqueous
medium. This catalyst can be used for the synthe-
sis of 1,4-DHPs using a wide range of aldehydes
and ꢀ-dicarbonyl compounds. The microwave irra-
diated reactions in aqueous medium in the pres-
ence of catalyst afforded moderate to excellent yield
(98%) within short reaction periods (<5 min). The
Zn[(L)proline]2 exhibits greater catalytic activity
even with low MW power (≈200 W) and it can be
reusable up to five cycles without appreciable loss
of its catalytic activity. The present investigation
provides 1,4-DHPs in high yield within shorter re-
action time and easier separation of products with
acceptable purity. Hence this methodology is a
green protocol with respect to reduce the use of
organic solvents and consuming less microwave
power.
[22] Nomura, M.; Nakata, S.; Hamada, F. Nippon Kagaku
Kaishi 2002, 141.
[23] Tu, S.-J.; Gao, Y.; Yu, C.-X.; Shi, D.-Q. Chinese J Org
Chem 2002, 22, 269.
[24] Lavilla, R. J Chem Soc, Perkin Trans 1, 2002, 1141.
[25] Kidwai, M.; Saxena, S.; Mohan, R.; Venkatraman, R.
J Chem Soc, Perkin Trans 1, 2002, 1845.
[26] Cotterill, C.; Usyatinsky, A. Y.; Arnold, J. M.; Clark,
D. S.; Dordick, J. S.; Michels, P. C.; Khmelnitsky, Y. L.
Tetrahedron Lett 1998, 39, 1117.
[27] Rodriguez, H.; Reyes, O.; Suarez, M.; Garay, H. E.;
Perez, R.; Cruz, L. J.; Verdecia, Y.; Martin, N.; Seoane,
C. Tetrahedron Lett 2002, 43, 439.
[28] Kostyuk, N.; Volochnyuk, D. M.; Lupiha, L. N.;
Pinchuk, A. M.; Tolmachev, A. A. Tetrahedron Lett
2002, 43, 5423.
[29] Correa, W. H.; Scott, J. L. Green Chem 2001, 3, 296.
[30] Ohberg, L.; Westman, J. Synlett 2005, 1296.
[31] Vanden Eynde, J. J.; Mayence, A. Molecules 2003, 8,
381.
[32] Lidstrom, P.; Tierny, J.; Washy, B.; Westman, J.
Tetrahedron 2001, 57, 9225.
[33] Sivamurugan, V.; Deepa, K.; Palanichamy, M.;
Murugesan, V. Synth Commun 2004, 34, 3833.
[34] Microwave Promoted Synthesis of 1,4-Dihydrop-
yridines in Aqueous Medium. A mixture of 5 mmol
of veratraldehyde, 11 mmol of ethyl acetoacetate,
and 10 mmol of ammonium acetate was thoroughly
mixed with 0.2 mmol of Zn[(L)proline]2 complex in
20 mL of double distilled water and 5 mL of abso-
lute ethanol (Scheme 1). The reaction mixture was
taken in an open Erlenmeyer flask and irradiated us-
ing a household microwave oven (model: IFB 17PM
1S) with a power range of 200 W (≈75◦C) and a pulse
of 10 s. The progress of the reaction was monitored
by TLC (silica gel precoated plate, eluent:n-hexane
to ethyl acetate ratio = 80:20) up to disappearance
of reactants. After completion of the reaction, the
mixture was kept at 10–15◦C for 24 h. The prod-
uct slowly crystallized from aqueous phase and
it was separated by simple filtration. The pu-
rification step was not required as the product
was in pure form. The above-mentioned procedure
was followed for all other reactions. The reaction
time and yield for all the reactions are given in
Table 1.
REFERENCES
[1] Lindstrom, U. M. Chem Rev 2004, 102, 2751.
[2] (a) Breslow, R.; Maitra, U. Tetrahedron Lett 1984, 25,
1239; (b) Grieco, P. A.; Yoshida, R.; Garner, P. J Org
Chem 1983, 48, 3137.
[3] Gajewsky, J. J. Acc Chem Res 1997, 30, 219.
[4] Kobayashi, S. In Organic Synthesis in Water; Grieco,
P. A. (Ed.); Blackie Academic & Professional: London,
1998.
[5] (a) Lu, W.; Chan, T. H. J Org Chem 2001, 66, 3467;
(b) Loh, T. P.; Zhou, J. R. Tetrahedron Lett 1999, 40,
9115.
[6] Fokin, V. V.; Sharpless, K. B. Angew Chem Int Ed Engl
2001, 40, 3455.
[7] Nagel, U.; Albrecht, J. Top Catal 1998, 5, 3.
[8] Loev, B.; Goodman, M. M.; Snader, K. M.; Tedeschi,
R.; Macko, E. J Med Chem 1974, 19, 956.
[9] Liang, J.-C.; Yeh, J.-L.; Wang, C.-S.; Liou, S.-F.;
Tsai, C.-H.; Chen, I. J. Bioorg Med Chem 2002, 10,
719.
[10] Hantzsch, A. Justus Liebigs Ann Chem 1882, 215, 1.
[11] Sausins, H.; Duburs, G. Heterocycles 1988, 27, 269.
[12] Gordeev, M. F.; Patel, D. V.; Gordon, E. M. J Org Chem
1996, 61, 924.
[35] Catalyst
Recycling
Studies.
2-Furfuraldehyde
(5 mmol), acetylacetone (11 mmol), and ammo-
nium acetate (10 mmol) were thoroughly mixed
Heteroatom Chemistry DOI 10.1002/hc