6 M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe
and O. M. Yaghi, Science, 2002, 295, 469.
7 H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne,
C. B. Knobler, B. Wang and O. M. Yaghi, Science, 2010, 327,
846–850.
8 H. Chun, D. N. Dybtsev, H. Kim and K. Kim, Chem.–Eur. J.,
2005, 3521–3529.
9 P. V. Dau, M. Kim, S. J. Garibay, F. H. L. Muench, C. E. Moore
and S. M. Cohen, Inorg. Chem., 2012, 51, 5671–5676.
10 M. Kim, J. A. Boissonnault, C. A. Allen, P. V. Dau and
S. M. Cohen, Dalton Trans., 2012, 41, 6277–6282.
11 S. J. Garibay and S. M. Cohen, Chem. Commun., 2010, 46,
7700–7702.
12 T. M. Macdonald, W. R. Lee, J. A. Mason, B. M. Wiers,
C. S. Hong and J. R. Long, J. Am. Chem. Soc., 2012, 134, 7056.
13 I. Eryazici, O. K. Farha, B. G. Hauser, A. O. Yazaydin,
A. A. Sarjeant, S. T. Nguyen and J. T. Hupp, Cryst. Growth
Des., 2012, 12, 1075–1080.
14 S. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia,
J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah,
P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake
and M. Schroder, Nat. Mater., 2012, 11, 710–716.
15 J. K. Schnobrich, O. Lebel, K. A. Cychosz, A. Dailly, A. G. Wong-
Foy and A. J. Matzger, J. Am. Chem. Soc., 2010, 132,
13941–13948.
Fig. 5 Structure of the two interpenetrated nets of Zn(II)–MOF–
BTB[OH]3, highlighting the p–p stacking. The first net is highlighted
in orange with Zn atoms displayed as green balls, and the second net is
highlighted in purple with Zn atoms displayed as cyan balls.
not be definitively identified. Initial BET surface area measure-
ments of Zn(II)–MOF–BTB[OH]3 showed the material to be
non-porous to dinitrogen; however, additional efforts to activate
this material are underway (e.g. supercritical CO2).
16 S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, Inorg. Chem.,
2008, 47, 7751–7756.
In conclusion, we present a route to functionalized tritopic
H3BTB ligands with either methoxy or hydroxy functional
groups. While the combination of H3BTB–[OMe]3 and Zn(II)
generates the first functionalized MOF-177, the combination
of H3BTB–[OH]3 and Zn(II) allows the formation of the first
functionalized interpenetrated pcu-e framework. These two
H3BTB ligands are the initial, necessary steps to obtaining
functionalized, isostructural analogues of high surface area
MOFs, such as MOF-177, UMCM-1, and others. These ligands
may also provide a chemical handle for PSM approaches to
further modifying these MOFs. Finally, the similar binding
motif between H3BTB–[OH]3 and 2,5-dihydroxyterephthalic
acid (DHTA) may also serve to generate MOFs with open
metal site rich topologies such as MOF-74.30 These studies will
be reported in due course.
17 J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B. Moler,
M. O’Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2001, 123,
8239–8247.
18 N. Klein, I. Senkovska, I. A. Baburin, R. Grunker, U. Stoeck,
M. Schlichtenmayer, B. Streppel, U. Mueller, S. Leoni,
M. Hirscher and S. Kaskel, Chem.–Eur. J., 2011, 17, 13007–13016.
19 H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. B. Go, M. Eddaoudi,
A. J. Matzger, M. O’Keeffe and O. M. Yaghi, Nature, 2004, 427,
523–527.
20 K. Koh, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc.,
2009, 131, 4184–4185.
21 K. Koh, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc.,
2010, 132, 15005–15010.
22 H. Furukawa, Y. B. Go, N. Ko, Y. K. Park, F. J. Uribe-Romo,
J. Kim, M. O’Keeffe and O. M. Yaghi, Inorg. Chem., 2011, 50,
9147–9152.
23 I. M. Hauptvogel, V. Bon, R. Grunker, I. A. Baburin,
I. Senkovska, U. Mueller and S. Kaskel, Dalton Trans., 2012, 41,
4172–4179.
24 D. Sun, S. Ma, Y. Ke, T. M. Petersen and H.-C. Zhou, Chem.
Commun., 2005, 2663–2665.
25 K. Gedrich, M. Heitbaum, A. Notzon, I. Senkovska, R. Frohlich,
J. Getzschmann, U. Mueller, F. Glorius and S. Kaskel, Chem.–Eur. J.,
2011, 17, 2099–2106.
We thank Dr C. E. Moore (UCSD) for assistance with
crystallographic study. This work was supported by a grant
from the National Science Foundation (CHE-0952370).
Notes and references
26 M. O’Keeffe and O. M. Yaghi, Chem. Rev., 2012, 112, 675–702.
27 V. Bon, V. Senkovskyy, I. Senkovska and S. Kaskel, Chem.
Commun., 2012, 48, 8407–8409.
1 M. P. Suh, H. J. Park, T. K. Prasad and D.-W. Lim, Chem. Rev.,
2012, 112, 782–835.
2 K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch,
Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2012, 112, 724–781.
3 M. Yoon, R. Srirambalaji and K. Kim, Chem. Rev., 2012, 112,
1196–1231.
4 L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne
and J. T. Hupp, Chem. Rev., 2012, 112, 1105–1125.
5 O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae,
M. Eddaoudi and J. Kim, Nature, 2003, 423, 705–706.
28 S. R. Batten, B. F. Hoskins and R. Robson, J. Am. Chem. Soc.,
1995, 117, 5385–5386.
29 B. F. Abrahams, S. R. Batten, H. Hamit, B. F. Hoskins and
R. Robson, Angew. Chem., Int. Ed. Engl., 1996, 35, 1690–1691.
30 H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa,
M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina,
H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart and
O. M. Yaghi, Science, 2012, 336, 1018–1023.
c
9372 Chem. Commun., 2012, 48, 9370–9372
This journal is The Royal Society of Chemistry 2012