ChemComm
Communication
Table 2 Effect of substituents in the phenyl group of styrene in the
annulation processa,b,c
Scheme 6 Synthesis of pseudoprolines from styrene.
In conclusion, the first report on the non-Wacker inter-
molecular geminal oxyamination of vinyl arenes (styrenes)
through a domino process is described. This highly stereo-
selective oxidative geminal addition is found to involve a
semipinacol rearrangement. The diastereomeric alkenes were
found to show stereoconvergence in the product formation.
The migration of the phenyl group in the semipinacol rearran-
gement was confirmed by deuterium labeling studies. The
efficacy of this method was exemplified in the synthesis of
pseudoprolines from styrene.
a
b
c
d
Conditions: the same as Table 1. 3m: rt, 12 h. 3l: rt, 4 h. Isolated
e
yields. Uncyclized bromoether = 29%.
We thank Mr. Amol G. Dikundwar and Prof. T. N. Guru Row
for their help in X-ray crystal structure determination of com-
pounds 3b and 3n. P.V.B. thanks IISc for an Int.PhD Fellowship
and CSIR, India, for a CSIR-SRF fellowship. S.C. thanks DST,
India, for a JC Bose Fellowship.
Notes and references
1 E. Block and A. L. Schwan, in Comprehensive Organic Synthesis, ed. B. M.
Trost and I. Fleming, Pergamon, Oxford, 1st edn, 1991, vol. 4, p. 329.
2 (a) A. Wang, H. Jiang and H. Chen, J. Am. Chem. Soc., 2009,
131, 3846; (b) L. Emmanuvel, T. M. A. Shaikh and A. Sudalai, Org.
Lett., 2005, 7, 5071; (c) R. B. Woodward and F. V. Brutcher Jr., J. Am.
Chem. Soc., 1958, 80, 209.
Scheme 4 Stereoconvergence of diastereomeric alkenes.
they were found to furnish oxazolidine 3n as the sole product with
the same stereochemistry at both the newly formed endocyclic and
exocyclic stereogenic centers. The observed stereoidentity of the
products formed strongly implies the convergence of the diastereo-
meric intermediates formed from the diastereomeric olefins. It is
pertinent to speculate that the rotation of the Ca–Cb bond (inter-
mediate C, Scheme 3) of the open or weakly bound carbocation
causes the loss of stereogenicity of the olefin, which eventually
causes the loss of stereospecificity through stereoconvergence.
To follow the trajectory of the migration process, the b,b-di-
deuterated-styrene 2p was chosen as the olefin for investigation.
This styrene containing two deuteriums and a phenyl group at
the vicinal position, under these oxidative addition conditions, got
transformed into an oxazolidine 3p containing the exocyclic methyl-
ene group constituting two deuteriums and a phenyl group on the
same carbon (Scheme 5). This result unequivocally confirms the
migration of the phenyl group from the hydrogen attached carbon
(Ca, migration origin) to the di-deuterium attached carbon (Cb,
migration terminus) through a semipinacol rearrangement (inter-
mediates D–G, Scheme 3).
3 T. J. Donohoe, C. K. A. Callens, A. Flores, A. R. Lacy and A. H. Rathi,
Chem.–Eur. J., 2011, 17, 58.
˜
´
4 (a) K. Muniz and C. Martınez, J. Org. Chem., 2013, 78, 2168;
(b) F. Cardona and A. Goti, Nat. Chem., 2009, 1, 269.
5 S. D. R. Christie and A. D. Warrington, Synthesis, 2008, 1325.
6 (a) U. Farid and T. Wirth, Angew. Chem., Int. Ed., 2012, 51, 3462;
(b) V. A. Schmidt and E. J. Alexanian, J. Am. Chem. Soc., 2011,
133, 11402; (c) H. M. Lovick and F. E. Michael, J. Am. Chem. Soc.,
2010, 132, 1249.
7 (a) S. E. Denmark, W. E. Kuester and M. T. Burk, Angew. Chem., Int.
Ed., 2012, 51, 10938; (b) L. Zhou, D. W. Tay, J. Chen, G. Y. C. Leung
and Y.-Y. Yeung, Chem. Commun., 2013, 49, 4412.
8 J. Tsuji, Synthesis, 1984, 369.
9 (a) P. Teo, Z. K. Wickens, G. Dong and R. H. Grubbs, Org. Lett., 2012,
14, 3237; (b) C. N. Cornell and M. S. Sigman, Org. Lett., 2006, 8, 4117;
(c) J. Chen and C.-M. Che, Angew. Chem., Int. Ed., 2004, 43, 4950;
(d) H. Kikuchi, K. Kogure and M. Toyoda, Chem. Lett., 1984, 341.
10 (a) U. Farid, F. Malmedy, R. Claveau, L. Albers and T. Wirth, Angew.
Chem., Int. Ed., 2013, 52, 7018; (b) M. A. Kumar, P. Swamy,
M. Naresh, M. M. Reddy, C. N. Rohitha, S. Prabhakar,
A. V. S. Sarma, J. R. P. Kumar and N. Narender, Chem. Commun.,
2013, 49, 1711; (c) A. D. Chowdhury and G. K. Lahiri, Chem.
Commun., 2012, 48, 3448; (d) A. M. Balija, K. J. Stowers, J. Schultz
and M. S. Sigman, Org. Lett., 2006, 8, 1121; (e) T. Hosokawa, T. Ohta,
S. Kanayama and S.-I. Murahasi, J. Org. Chem., 1987, 52, 1758.
11 R. M. McDonald, G. Liu and S. S. Stahl, Chem. Rev., 2011, 111, 2981.
The potency and the expediency of this geminal oxidative
addition were exemplified in the straightforward synthesis of
pseudoprolines 3q and 3t from styrene 2a in a single pot with a 12 (a) A. F. Ward and J. P. Wolfe, Org. Lett., 2011, 13, 4728;
(b) L. D. Elliott, J. W. Wrigglesworth, B. Cox, G. C. Lloyd-Jones and
very high stereoselectivity (Scheme 6).
K. I. Booker-Milburn, Org. Lett., 2011, 13, 728.
13 When the reaction was performed with the lesser equivalents
(catalytic) of NBS (0.2 equiv.) or AgOTf (0.2 equiv.), the yield of the
product was found to decrease proportionally. For optimization data
refer to ESI†.
14 CCDC 942034 and 942035 contain the supplementary crystallo-
graphic data for the compunds 3b and 3n.
15 D. J. Cram, J. Am. Chem. Soc., 1952, 84, 2129.
Scheme 5 Deuterium labeling study.
72 | Chem. Commun., 2014, 50, 70--72
This journal is ©The Royal Society of Chemistry 2014