V.K. Das et al. / Applied Catalysis A: General 456 (2013) 118–125
125
Acknowledgment
VKD thanks UGC for Rajiv Gandhi National Fellowship to him.
Appendix A. Supplementary data
Supplementary data associated with this article can be
References
[1] J. Safari, S.D. Khalili, M. Rezaei, S.H. Banitaba, F. Meshkani, Monatsh. Chem. 141
(2010) 1339–1345.
[2] M.B. Choudary, K.V.S. Ranganath, U. Pal, L.M. Kantam, B. Sreedhar, J. Am. Chem.
Soc. 127 (2005) 13167–13171.
[3] H. Hattori, Chem. Rev. 95 (1995) 537–550.
[4] G. Pacchioni, T. Minerva, R.S. Bagus, Surf. Sci. 275 (1992) 450–458.
[5] J. Sawai, H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, T. Sawaki, A. Hakoda,
E. Kawada, T. Kokugan, M. Shimizu, World J. Microbiol. Biotechnol. 16 (2000)
187–194.
[6] K.S. Peter, L. Rosalyn, L.M. George, J.K. Klabunde, Langmuir 18 (2002)
6679–6686.
Fig. 10. UV–vis spectra of fresh and reused nano-MgO.
[7] A. Greenberg, C.M. Breneman, J.F. Liebman (Eds.), The Amide Linkage: Selected
Structural Aspects in Chemistry, Biochemistry, and Materials Science, Wiley-
Interscience, New York, 2000.
[8] A. Shaabani, E. Soleimani, A.H. Rezayan, Tetrahedron Lett. 48 (2007) 6137–6142.
[9] S. Muthaiah, S.C. Ghosh, J-E. Jee, C. Chen, J. Zhang, S.H. Hong, J. Org. Chem. 75
(2010) 3002–3006.
[10] T. Mitsudome, Y. Mikami, H. Mori, S. Arita, T. Mizugaki, K. Jitsukawaa, K. Kaneda,
Chem. Commun. 14 (2009) 3258–3260.
[11] J-F. Soule, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc. 133 (2011)
18550–18553.
[12] K. Yamaguchi, Y. Wang, H. Kobayashi, N. Mizuno, Chem. Lett. 41 (2012)
574–576.
[13] Y. Wang, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 51 (2012) 7250–7253.
[14] Y. Wang, D. Zhu, L. Tang, S. Wang, Z. Wang, Angew. Chem. Int. Ed. 50 (2011)
8917–8921.
[15] D. Talukdar, L. Saikia, A.J. Thakur, Synlett 11 (2011) 1597–1601.
[16] M.B.M. Reddy, S. Ashoka, G.T. Chandrappa, M.A. Pasha, Catal. Lett. 138 (2010)
82–87.
[17] V.K. Das, R.R. Devi, P.K. Raul, A.J. Thakur, Green Chem. 14 (2012) 847–854.
[18] A.R. Yacob, M.K.A.A. Mustajab, N.S. Samadi, Eng. Technol. 56 (2009) 408–412.
[19] H.S. Jung, J.K. Lee, J.Y. Kim, K.S. Hong, J. Colloid Interface Sci. 259 (2003) 127–132.
[20] W.L. Xie, H. Peng, L.G. Chen, Appl. Catal. A 300 (2006) 67–74.
[21] L. Forni, Catal. Rev. 8 (1974) 65–115.
[22] K. Arnold, A.S. Batsanov, B. Daves, A. Whiting, Green Chem. 10 (2008) 124–134.
[23] J.E. Herz, R.E. Mantecon, Org. Prep. Proc. Int. 4 (1972) 129–134.
[24] J.C. Sheehan, P.G. Hess, J. Am. Chem. Soc. 77 (1955) 1067–1068.
[25] A.J. Pearson, W.R. Roush, Handbook of Reagents for Organic Synthesis: Activat-
ing Agents and Protecting Groups, Wiley, New York, 1999.
[26] P.S. Chaudhari, S.D. Salim, R.V. Sawant, K.G. Akamanchi, Green Chem. 12 (2010)
1707–1710.
3.7. Measurement of “green-ness” by using green metrics
The “green-ness” of the present methodology was evaluated by
that shows the superiority of nano-MgO over other catalysts.
The waste produced during the course of the reaction is
the least in our protocol compared to the other methodologies
[22–26]. Moreover, the issues like solvent reusability and catalyst
recyclability are omitted by E-factor which absolutely raises the
accuracy.
4. Conclusions
In conclusion, we have developed a practical and greener
‘NOSE’ protocol for the clean synthesis of both aliphatic and aro-
matic amides utilizing nano-MgO as an efficient, reusable and
cheap catalyst under SFRC. Simple experimental condition, varied
substrate compatibility, high yields of the products, chemo selec-
tivity, and non-hygroscopic nature of catalyst make our protocol a
more potent benign alternative over conventional ones for amide
synthesis.