1664
M. Arnost et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1661–1664
Table 3
By employing the simple binding efficiency index calculation to
a screening hit, it has been possible to optimize a new class of
GSK3b inhibitors from 1.5 M to <1 nM, without compromising
binding efficiency. In doing so, molecular weights of the most po-
tent and efficient molecules have been controlled and lie well
within the range of lead-like molecules,17 allowing for further opti-
mization of properties necessary for an orally available, efficacious
therapeutic molecule.
Kinase selectivity profile of compounds 37, 39 and 54
l
MeO
MeO
MeO
N
N
N
N
N
N
H
OMe
N
N
N
N
N
H
H
N
N
N
O
O
O
H
H
H
Acknowledgements
54
37
39
Kinase
37 Ki (nM)
39 Ki (nM)
54 Ki (nM)
The authors thank Ann Grippo, Yu-Ping Luong, Christine Mem-
mott, Cameron Stuver Moody and Paul Taslimi, for enzymology
support.
GSK3b
CDK2
Flt3
0.8
95
66
2
62
130
4.5
76
290
IRAK4
JAK2
JNK3
PI3Kg
KDR
MET
PKA
Plk1
690
1500
>4000
>4000
1000
3400
>4000
>4000
>4000
>4000
>4000
>4000
1100
3500
2500
540
1000
>4000
>4000
>4000
>4000
>4000
1800
>1600
>4000
1300
1800
>4000
>4000
>4000
>4000
>4000
690
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
ROCK1
Src
Syk
1. Cohen, P.; Yellowlees, D.; Aitken, A.; Donella-Deana, A.; Hemmings, B. A.;
Parker, P. J. Eur. J. Biochem. 1982, 124, 21.
2. Lau, K. F.; Miller, C. C.; Anderton, B. H.; Shaw, P. C. J. Pept. Res. 1999, 54, 85.
3. Hoeflich, K. P.; Luo, J.; Rubie, E. A.; Tsao, M.-S.; Jin, O.; Woodgett, J. R. Nature
2000, 406, 86.
4. Rayasam, G. V.; Tulasi, V. K.; Sodhi, R.; Davis, J. A.; Ray, A. Br. J. Pharmacol. 2009,
156, 885.
shown in Table 3 and shows good overall selectivity (minimally
>20Â) for an early lead series.25
During the course of this work we were able to obtain the X-ray
crystallographic structure26 of compound 46 (GSK3b Ki <2 nM; BEI
>24.2) bound to GSK3b, which confirms the expected binding
mode ( Fig. 3). In this structure, hydrogen-bonding contacts are
made between the pyrazolone NH and CO and the backbone of
hinge residues Asp133 and Val135, respectively. In addition, the
methoxy substituents (R1 = 3,4-dimethoxyphenyl) make hydro-
gen-bonding contacts with both the backbone NH of Asp200 and
the sidechain amine of Lys85. It appears that this set of hydrogen
bonds, plus the hydrophobic contacts made by the two phenyl
rings of the scaffold, form a maximally efficient binding core in
GSK3. Ligands lacking any of these elements are generally less po-
tent, though they may be equally efficient, while molecules con-
taining additional functionality fall off in binding efficiency,
though they may be equally potent.
5. Cohen, P.; Goedert, M. Nat. Rev. Drug Disc. 2004, 3, 479.
6. Rowe, M. K.; Wiest, C.; Chuang, D. Neurosci. Biobehav. Rev. 2007, 31, 920.
7. Jope, R. S.; Roh, M. S. Curr. Drug Targets 2006, 7, 1421.
8. Hernandez, F.; Avila, J. FEBS Lett. 2008, 582, 3848.
9. Hooper, C.; Killick, R.; Lovestone, S. J. Neurochem. 2008, 104, 1433.
10. Savage, M. J.; Gingrich, D. E. Drug Dev. Res. 2009, 70, 125.
11. Sugden, P. H.; Fuller, S. J.; Weiss, S. C.; Clerk, A. Br. J. Pharmacol. 2008, 153, S137.
12. Lee, J.; Kim, M. S. Diabetes Res. Clin. Pract. 2007, 77, S49.
13. Wagman, A. S.; Johnson, K. W.; Bussiere, D. E. Curr. Pharm. Des. 2004, 10, 1105.
14. Medina, M.; Castro, A. Curr. Opin. Drug Discov. Devel. 2008, 11, 533.
15. Hopkins, A. L.; Groom, C. R.; Alex, A. Drug Discovery Today 2004, 9, 430.
16. Abad-Zapatero, C.; Metz, J. T. Drug Discovery Today 2005, 10, 464.
17. Teague, S. J.; Davis, A. M.; Leeson, P. D.; Oprea, T. Angew. Chem., Int. Ed. 1999, 38,
3743.
18. Meijer, L.; Skaltsounis, A.-L.; Magiatis, P.; Polychronopoulos, P.; Knockaert, M.;
Leost, M.; Ryan, X. P.; Vonica, C. A.; Brivanlou, A.; Dajani, R.; Crovace, C.;
Tarricone, C.; Musacchio, A.; Roe, M. S.; Pearl, L.; Greengard, P. Chem. Biol. 2003,
10, 1255.
19. Coghlan, M. P.; Culbert, A. A.; Cross, D. A. E.; Corcoran, S. L.; Yates, J. W.; Pearce,
N. J.; Rausch, O. L.; Murphy, G. J.; Carter, P. S.; Cox, L. R.; Mills, D.; Brown, M. J.;
Haigh, D.; Ward, R. W.; Smith, D. G.; Murray, K. J.; Reith, A. D.; Holder, J. C.
Chem. Biol. 2000, 7, 793.
20. Bertrand, J. A.; Thieffine, S.; Vulpetti, A.; Cristiani, C.; Valsasina, B.; Knapp, S.;
Kalisz, H. M.; Flocco, M. J. Mol. Biol. 2003, 333, 393.
21. Jung, M. E.; Lau, P. Y.; Mansuri, M. M.; Speltz, L. M. J. Org. Chem. 1985, 50, 1087.
22. Compounds described were prepared according to the following general
procedure: To a solution of aniline (1.1 equiv) in 6 M HCl (2 mL/mmol) at 0 °C
is added NaNO2 (1.1 equiv) and the mixture stirred at 0 °C for 30 min. The
solution is added to the pyrazolone (1 equiv in 50% aqueous EtOH, 3 mL/mmol)
and potassium acetate (6 equiv) and the mixture stirred at 0 °C for a further
30 min. The precipitate is filtered, washed with water and dried. Products are
purified by HPLC.
23. Compounds were assayed by modification the coupled assay method described
in: Fox, T.; Coll, J. T.; Xie, X.; Ford, P. J.; Germann, U. A.; Porter, M. D.;
Pazhanisamy, S.; Fleming, M. A.; Galullo, V.; Su, M. S.; Wilson, K. P. Protein Sci.
1998, 7, 2249. Assay details are provided in the Supplementary data.
24. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.;
Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.;
Shenkin, P. S. J. Med. Chem. 2004, 47, 1739.
25. GSK3b–CDK2 inhibitor selectivity and models for designing improved
selectivity are reported by Vulpetti, A.; Crivori, P.; Cameron, A.; Bertrand, J.;
Brasca, M. G.; D’Alessio, R.; Pevarello, P. J. Chem. Inf. Model. 2005, 45, 1282.
26. Crystallographic data for the compound 46 bound to GSK3b has been deposited
with the RCSB Protein Data Bank. PDB ID: 3L1S.
Figure 3. X-ray crystal structure of compound 46 bound to GSK3b (PDB ID: 3L1S).