ChemComm
Communication
Table 2 Exploration of reaction scope
the reaction was studied by NMR spectroscopy and LCMS for
azaindole 4, revealing nearly full conversion of azaindole precursor
to product. For this reaction, the only discernable impurity in
greater than 5% yield in NMR spectra of the unpurified material
after basic work up was benzoin.
In conclusion, we have developed an efficient method for
the transition-metal-free synthesis of azaindoles. This method
provides access to a range of 2-aryl azaindole regioisomers as
well as to diazaindoles. A broad scope of meta- and para-
functionalization on the C2 aryl substituent is tolerated, including
halogens, other electron-withdrawing groups, and electron-
donating groups. The azaindole products were purified through
an aqueous workup followed by recrystallization or column
chromatography. To the best of our knowledge, this is the first
synthesis of the full regioisomeric family of azaindoles employing
mild temperature and conditions without transition metal catalysis.
Further expansion of NHC-catalyzed dual activation strategies to
access functionalized heterocycles are underway.
HAS, MTH, and KAS acknowledge financial support generously
provided by the NIH (NIGMS R01-GM073072). HAS thanks North-
western University for a Summer Undergraduate Research Grant.
Notes and references
1 Pertinent reviews on azaindole synthesis and medicinal activities:
´
´
(a) J.-Y. Merour, F. Buron, K. Ple, P. Bonnet and S. Routier, Molecules,
´
2014, 19, 19935–19979; (b) J.-Y. Merour, S. Routier, F. Suzenet and
B. Joseph, Tetrahedron, 2013, 69, 4767–4834.
2 (a) Y. Mettey, M. Gompel, V. Thomas, M. Garnier, M. Leost, I. Ceballos-
Picot, M. Noble, J. Endicott, J.-M. Vierfond and L. Meijer, J. Med. Chem.,
2003, 46, 222–236; (b) F. Pin, F. Buron, F. Saab, L. Colliandre, S. Bourg,
F. Schoentgen, R. Le Guevel, C. Guillouzo and S. Routier, Med. Chem.
Commun., 2011, 2, 899–903; (c) V. Bavetsias, A. Faisal, S. Crumpler,
´
N. Brown, M. Kosmopoulou, A. Joshi, B. Atrash, Y. Perez-Fuertes, J. A.
Schmitt, K. J. Boxall, R. Burke, C. Sun, S. Avery, K. Bush, A. Henley,
F. I. Raynaud, P. Workman, R. Bayliss, S. Linardopoulos and J. Blagg,
J. Med. Chem., 2013, 56, 9122–9135; (d) H. Koolman, T. Heinrich,
¨
H. Bottcher, W. Rautenberg and M. Reggelin, Bioorg. Med. Chem. Lett.,
2009, 19, 1879–1882; (e) D. P. Power, O. Lozach, L. Meijer, D. H.
Grayson and S. J. Connon, Bioorg. Med. Chem. Lett., 2010, 20,
4940–4944; ( f ) S. Naud, I. M. Westwood, A. Faisal, P. Sheldrake,
V. Bavetsias, B. Atrash, K.-M. J. Cheung, M. Liu, A. Hayes, J. Schmitt,
A. Wood, V. Choi, K. Boxall, G. Mak, M. Gurden, M. Valenti, A. de
Haven, B. A. Henley, R. Baker, C. McAndrew, B. Matijssen, R. Burke,
S. Hoelder, S. A. Eccles, F. I. Raynadu, S. Linardopoulos, R. L. M. van
Montfort and J. Blagg, J. Med. Chem., 2013, 56, 10045–10065.
3 M. H. Fisher, G. Schwartzkopf and D. R. Hoff, J. Med. Chem., 1972,
15, 1168–1171.
a
Purple denotes a previously unreported azaindole. b Denotes an unreported
azaindole with substitution never before reported on any (di-)azaindole
regioisomer.16
4 (a) D. P. Zlotos, R. Jockers, E. Cecon, S. Rivara and P. A. Witt-
Enderby, J. Med. Chem., 2013, 57, 3161–3185; (b) A. Trejo, H. Arzeno,
M. Browner, S. Chanda, S. Cheng, D. D. Comer, S. A. Dalrymple,
P. Dunten, J. A. Lafargue, B. Lovejoy, J. Freire-Moar, J. Lim,
J. Mcintosh, J. Miller, E. Papp, D. Reuter, R. Roberts, F. Sanpablo,
J. Saunders, K. Song, V. Armando, S. D. Warren, M. Welch, P. Weller,
P. E. Whiteley, L. Zeng and D. M. Goldstein, J. Med. Chem., 2003, 46,
4702–4713.
5 R. Rai, A. Kolesnikov, P. A. Sprengler, S. Torkelson, T. Ton, B. A.
Katz, C. Yu, J. Hendrix, W. D. Shrader, R. Stephens, R. Cabuslay,
E. Sanford and W. B. Young, Bioorg. Med. Chem. Lett., 2006, 16,
2270–2273.
6 (a) M. McLaughlin, M. Palucki and I. W. Davies, Org. Lett., 2006, 8,
3307–3310; (b) T. C. Leboho, S. F. van Vuuren, J. P. Michael and
C. B. de Koning, Org. Biomol. Chem., 2014, 12, 307; (c) I. Simpson,
S. A. St-Gallay, S. Stokes, D. T. E. Whittaker and R. Wiewiora,
Tetrahedron Lett., 2015, 56, 1492–1495.
7 S. H. Spergel, D. R. Okoro and W. Pitts, J. Org. Chem., 2010, 75,
5316–5319.
unknown reaction products. The use of cinnamyl or crotyl
aldehydes yielded no detectable product.
In addition to the current substrate scope, multiple recrys-
tallization techniques to yield pure azaindoles have been developed.
Initially, aqueous work-up and silica gel chromatography success-
fully yielded 2-phenyl-7-azaindole 4. However, we observed poor
solubility of most unprotected azaindoles in common chromato-
graphic solvents, rendering standard isolation difficult. Further
investigation showed that a basic workup followed by recrystal-
lization from DCM through slow addition of toluene or hexanes
afforded the azaindole products in high purity and yield. This
purification method takes advantage of the limited solubility
of the synthesized compounds and the minimal formation of
insoluble side-products/byproducts. The general cleanliness of
This journal is ©The Royal Society of Chemistry 2016
Chem. Commun.