3
6.
7.
Stevens, M.; Pollicita, M.; Pannecouque, C.; Verbeken, E.;
All 2-substituted quinolone-3-carboxylates were successfully
synthesized in moderate to good yields, except 3i which was
isolated in only 19% yield (Table 2, entry 9). The reason for the
low yield of 3i may be due to the electronic effects of the
chlorides in the aromatic ring. Except 3a, all obtained
compounds were novel and their structures identified by NMR
spectroscopy. Because of the free acidic proton, these compounds
have two possible tautomeric structures: 4-oxoquinoline and 4-
hydroxyquinoline. In the 1H-NMR spectra, a characteristic singlet
resonance was observed around 12 ppm for all compounds,
which could be assigned to either the NH or enolic OH proton.
Tabarrini, O.; Cecchetti, V.; Aquaro, S.; Perno, C. F.; Fravolini,
A.; De Clercq, E.; Schols, D.; Balzarini, J. Antimicrob. Agents Ch.
2007, 51, 14071413.
(a) Goncalves, V.; Brannigan, J. A:; Whalley, D.; Ansell, K. H.;
Saxty, B.; Holder, A. A.; Wilkinson, A. J.; Tate, E. W.;
Leatherbarrow, R. J. J. Med. Chem. 2012, 55, 3578. (b) Höglund,
I. P. J.; Silver, S.; Engström, M. T.; Salo, H; Tauber, A.;
Kyyrönen, H-K.; Saarenketo, P.; Hoffren, A-M.; Kokko, K.;
Pohjanoksa, K.; Sallinen, J.; Savola, J-M.; Wurster, S.; Kallatsa,
O. A. J. Med. Chem. 2006, 49, 6351-6363. (c) Fryer, R. I.; Zhang,
P.; Rios, R.; Gu, Z-Q.; Basile, A. S.; Skolnickt, P. J. Med. Chem.
1993, 36, 1669-1673. (d) Chen, S.; Chen, R.; He, M.; Pang, R.;
Tan, Z.; Yang, M. Bioorg. Med. Chem. 2009, 17, 1948-1956.
Abdou, W. M.; Ganoub, N. A. F.; Fahmy, A. F. M.; Shaddy, A. A.
M. Phosphorus Sulfur 2004, 180, 2373-2390.
(a) Pidathala, C.; Amewu, R.; Pacorel, B.; Nixon, G. L.; Gibbons,
P.; Hong, W. D.; Leung, S. C.; Berry, N. G.; Sharma, R.; Stocks,
P. A.; Srivastava, A.; Shone, A. E.; Charoensutthivarakul, S.;
Taylor, L.; Berger, O.; Mbekeani, A.; Hill, A.; Fisher, N. E.;
Warman, A. J.; Biagini, G. A.; Ward, S. A.; O’Neill, P. M. J. Med.
Chem. 2012, 55, 1831-1843. (b) Mai, A.; Rotili, D.; Tarantino, D.;
Ornaghi, P.; Tosi, F.; Vicidomini, C.; Sbardella, G.; Nebbioso, A.;
Miceli, M.; Altucci, L.; Filetici, P. J. Med. Chem. 2006, 49, 6897-
6907.
In previously reported work, 3a was prepared with two other
examples of quinolone-3-carboxylates containing a free NH in
the product, using N-hydroxysuccinimide as an activating
agent.11b The products prepared in the literature work gave only
poor to fair yields (13-34%) while all of the examples in the
current work were considerably better in yield (19-72%) The ease
and convenience of both methodologies are approximately the
8.
9.
same and the current work represents
a complementary
alternative to prepare N-unsubstituted-2-substituted quinolone-3-
carboxylates.
10. Kobayashi, K.; Nakashima, T.; Mano, M.; Morikawa, O.; Konishi,
H. Chem. Lett. 2001, 7, 602-603.
Consequently, we have developed a new method for the
synthesis of 2-substituted quinolone-3-carboxylates using N-
acylbenzotriazoles. This appears to be a suitable method for the
preparation of quinolones with a variety of substituents at the 2-
position and the benzene ring. Easily accessible starting
compounds, mild reaction conditions and short reaction times are
the advantages of the developed method.
11. (a) Tsantrizos, Y. S.; Bailey, M D.; Bilodeau, F.; Carson, R. J.;
Fader, L.; Halmos, T.; Kawai, S.; Landry, S.; Laplante, S.;
Simoneau, B. PCT Int. Appl. WO2009062289 (A1), 2009. (b)
Mitsos, C.; Zografos, A.; Igglessi-Markopoulou, O. Chem. Pharm.
Bull. 2000, 48, 211-214.
12. (a) Uneyama, K.; Morimoto, O.; Yamashita, F. Tetrahedron Lett.
1989, 30, 4821-4824. (b) Isobe, A.; Takagi, J.; Katagiri, T.;
Uneyama, K. Org. Lett. 2008, 10, 2657-2659.
13. (a) Jung, J-C.; Jung, Y-J.; Park, O-S. J. Heterocyclic Chem. 2001,
38, 61-67. (b) Bunce, R. A.; Nammalwar, B. Org. Prep. and
Proced. Int. 2010, 42, 557-563.
Acknowledgments
14. Kanışkan, N.; Kökten, Ş.; Çelik, İ. Arkivoc 2012, viii, 198.
15. Kökten, Ş.; Çelik, İ. Synthesis 2013, 45, 2551.
This work is dedicated to Professor Alan Roy Katritzky, who
died on 10th February, 2014. It is gratefully acknowledged that
this work was supported financially by Anadolu University
(Project No: 1306F110).
16. Chaturvedi, A. K.; Rastogi, N. Synthesis 2015, 47, 249-255.
17. Typical procedure for ethyl 4-hydroxy-2-methylquinoline-3-
carboxylate (3a): N-(2-Aminobenzoyl)benzotriazole 1a (238 mg,
1 mmol) and ethyl acetoacetate 2a (0.128 ml, 1 mmol) were
stirred in anhydrous THF at room temperature for 1 h. t-BuOK
(123 mg, 1.1 mmol) was added and the resulting mixture heated at
reflux for two hours. Upon reaction completion, the THF was
evaporated to provide the crude product which was first washed
with water, then purified by flash column chromatography (silica
gel, hexanes / EtOAc) to afford the desired product 3a (156 mg,
68%) as a white solid. 1H NMR (400 MHz, DMSO-d6): δ 11.98
(br s, 1H), 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.67 – 7.63 (m, 1H),
7.51 (d, J = 8.2 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 4.21 (q, J = 7.2
Hz, 2H), 2.37 (s, 3H), 1.24 (t, J = 7.0 Hz, 3H); 13C NMR (400
MHz, DMSO-d6): δ 173.9, 167.2, 149.4, 139.5, 132.7, 125.5,
124.9, 124.3, 118.4, 115.2, 60.8, 18.5, 14.5. Anal. Calcd. for
C13H13NO3: C, 67.52; H, 5.67; N, 6.06; found: C, 66.92; H, 5.74;
N, 6.09.
References and notes
1.
2.
3.
4.
Boteva, A. A.; Krasnykh, O. P. Chem. Het. Comp. 2009, 45, 757-
785.
Oliphant, C. M.; Green, G. M. Am. Fam. Physician 2002, 65, 455-
464.
Chu, D. T. W.; Fernandes, P. B. Antimicrob. Agents Ch. 1998, 33,
131 – 135.
(a) Yanagisawa, H.; Nakao, H.; Ando, A. Chem. Pharm. Bull.
1973, 21, 1080-1089; (b) Kondo, H.; Sakamoto, F.; Kawakami,
K.; Tsukamoto, G. J. Med. Chem. 1988, 31, 221-225.
Chem. 2008, 51, 4115-4121.
5.