Enantioselective Conjugate Addition of Ketones to Alkylidene Malonates
Scheme 1. Synthesis of chiral lactone 6a.
3a on a 10-mmol scale, affording desired product 4a with
Acknowledgments
excellent chemical yield and high stereoselectivities. Michael
adduct 4a was converted into chiral lactone 6a by following
a reductive cyclization process without incident (85% chem-
ical yield, 92:8dr, and 98%ee). The structural characteriza-
tion of lactone 6a was confirmed by 1H and 13C NMR spec-
troscopy and NOESY experiments (see Supporting Infor-
mation).
We thank the National Science Council of the Republic of China
(NSC 96-2113-M-003-005-MY3 and NSC 98-2119-M-003-003) for
financial support of this work. Our gratitude goes to the Academic
Paper Editing Clinic at NTNU and to the National Center for
High-Performance Computing for providing us with computer time
and facilities.
[1] a) P. I. Dalko, Enantioselective Organocatalysis, Wiley-VCH,
Weinheim, 2007; b) A. Berkessel, H. Gröger, Asymmetric Or-
ganocatalysis: From Biomimetic Concepts to Applications in
Asymmetric Synthesis, Wiley-VCH, Weinheim, 2005; for re-
views on asymmetric organocatalysis, see: c) A. Dondoni, A.
Massi, Angew. Chem. Int. Ed. 2008, 47, 4638–4660; d) H. Pel-
lissier, Tetrahedron 2007, 63, 9267–9331.
Conclusions
In summary, we have presented an efficient asymmetric
Michael addition of ketones with various alkylidene malon-
ates catalyzed by novel pyrrolidinyl–camphor organocata-
lysts. The structurally well-defined organocatalysts were
easily accessible from inexpensive natural materials. The re-
action proceeded smoothly under neat conditions, and the
corresponding Michael products were generally obtained
with high chemical yields (up to 95%) and high to excellent
levels of diastereoselectivity (up to Ͼ99:1dr) and enantio-
selectivity (up to 96%ee). A reasonable mechanistic model
was proposed to explain the stereochemical outcome. The
exploration of these novel organocatalysts in organocata-
lytic transformations is under active investigation.
[2] P. Perlmutter, Conjugate Addition Reactions in Organic Synthe-
sis, Pergamon, Oxford, 1992.
[3] For reviews on organocatalytic asymmetric conjugate addition
reactions, see: a) K. Tomioka, Y. Nagaoka, M. Yamaguchi in
Comprehensive Asymmetric Catalysis (Eds: E. N. Jacobsen, A.
Pfaltz, H. Yamamoto), Springer, New York, 1999, vol. III, pp.
1105–1139; b) S. Sulzer-Mossé, A. Alexakis, Chem. Commun.
2007, 3123–3135; c) J. L. Vicario, D. Badia, L. Carrillo, Synthe-
sis 2007, 2065–2092; d) S. B. Tsogoeva, Eur. J. Org. Chem. 2007,
1701–1716; e) J. Christoffers, A. Baro, Angew. Chem. 2003, 115,
1726; Angew. Chem. Int. Ed. 2003, 42, 1688–1690; f) O. M.
Berner, L. Tedeschi, D. Enders, Eur. J. Org. Chem. 2002, 1877–
1894; g) N. Krause, A. Hoffmann-Roder, Synthesis 2001, 171–
196; h) D. Almasi, D. A. Alonso, C. Nájera, Tetrahedron:
Asymmetry 2007, 18, 299–365.
Experimental Section
[4] For asymmetric Michael additions of aldehydes and ketones to
nitroolefins, see: a) B. List, P. Pojarliev, H. J. Martin, Org. Lett.
2001, 3, 2423–2425; b) J. M. Betancort, C. F. Barbas III, Org.
Lett. 2001, 3, 3737–3740; c) A. Alexakis, O. Andrey, Org. Lett.
2002, 4, 3611–3614; d) T. Ishii, S. Fujioka, Y. Sekiguchi, H.
Kotsuki, J. Am. Chem. Soc. 2004, 126, 9558–9559; e) Y. Haya-
shi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. Int. Ed.
2005, 44, 4212–4215; f) Y. Xu, W. Zou, H. Sundén, I. Ibrahem,
A. Cordóva, Adv. Synth. Catal. 2006, 348, 418–424; g) S. Luo,
X. Mi, L. Zhang, S. Liu, H. Xu, J.-P. Cheng, Angew. Chem.
Int. Ed. 2006, 45, 3093–3097; h) C. Palomo, S. Vera, A. Mielgo,
E. Gómez-Bengoa, Angew. Chem. Int. Ed. 2006, 45, 5984–5987;
i) S. Mossé, M. Laars, K. Kriis, T. Kanger, A. Alexakis, Org.
Lett. 2006, 8, 2559–2562; j) S. V. Pansare, K. Pandya, J. Am.
Chem. Soc. 2006, 128, 9624–9625; k) C.-L. Cao, M.-C. Ye, X.-
L. Sun, Y. Tang, Org. Lett. 2006, 8, 2901–2904; l) E. Reyes,
J. L. Vicario, D. Badía, L. Carrillo, Org. Lett. 2006, 8, 6135–
6138; m) Y. Xu, A. Cordóva, Chem. Commun. 2006, 460–462;
n) T. Mandal, C.-G. Zhao, Tetrahedron Lett. 2007, 48, 5803–
5806; o) L.-q. Gu, G. Zhao, Adv. Synth. Catal. 2007, 349, 1629–
1632; p) B. Ni, Q. Zhang, A. D. Headley, Green Chem. 2007,
9, 737–739; q) Y. Chi, L. Guo, N. A. Kopf, S. H. Gellman, J.
Am. Chem. Soc. 2008, 130, 5608–5609; r) M. Wiesner, J. D.
Revell, H. Wennemers, Angew. Chem. Int. Ed. 2008, 47, 1871–
General Procedure for the Michael Addition of Ketones to Alkylidene
Malonates: To cyclohexanone (184.5 mg, 1.90 mmol) and alkylid-
ene malonate 3a (50 mg, 0.19 mmol) was added organocatalyst 1e
(10.77 mg, 0.038 mmol, 20 mol-%) in one portion at ambient tem-
perature. The resulting mixture was allowed to stir at ambient tem-
perature and monitored by thin-layer chromatography. After the
disappearance of the alkylidene malonate, the reaction mixture was
purified through flash column chromatography on silica gel (petro-
leum ether/ethyl acetate, 10:1 to 5:1) to give desired product 4a
(95% yield, 96%ee). The stereoselectivity was determined by
HPLC analysis. HPLC (Chiralcel AS-H; iPrOH/hexanes, 6:94;
1.0 mLmin–1): tR = 26.16 (minor), 31.20 (major) min. syn/anti =
95/5. [α]2D0 = –49.5 (c = 0.393, CHCl3). 1H NMR (400 MHz,
CDCl3): δ = 8.14 (d, J = 8.7 Hz, 2 H), 7.47 (d, J = 8.7 Hz, 2 H),
4.16–4.04 (m, 2 H), 3.68 (s, 3 H), 3.51 (s, 3 H), 2.99–2.95 (m, 1 H),
2.43–2.37 (m, 2 H), 2.03–2.02 (m, 1 H), 1.78–1.75 (m, 2 H), 1.61–
1.55 (m, 2 H), 1.12–1.09 (m, 1 H) ppm.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures; spectral and analytical data for the
Michael adducts and lactone.
Eur. J. Org. Chem. 2010, 2062–2066
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2065