Journal of Medicinal Chemistry
Article
G. Application of fragment-based lead generation to the discovery of
novel, cyclic amidine beta-secretase inhibitors with nanomolar
potency, cellular activity, and high ligand efficiency. J. Med. Chem.
2007, 50 (24), 5912−5925. (c) Congreve, M.; Aharony, D.; Albert, J.;
Callaghan, O.; Campbell, J.; Carr, R. A.; Chessari, G.; Cowan, S.;
Edwards, P. D.; Frederickson, M.; McMenamin, R.; Murray, C. W.;
Patel, S.; Wallis, N. Application of fragment screening by X-ray
crystallography to the discovery of aminopyridines as inhibitors of
beta-secretase. J. Med. Chem. 2007, 50 (6), 1124−1132. (d) Baxter, E.
W.; Conway, K. A.; Kennis, L.; Bischoff, F.; Mercken, M. H.; Winter,
H. L.; Reynolds, C. H.; Tounge, B. A.; Luo, C.; Scott, M. K.; Huang,
Y.; Braeken, M.; Pieters, S. M.; Berthelot, D. J.; Masure, S.; Bruinzeel,
W. D.; Jordan, A. D.; Parker, M. H.; Boyd, R. E.; Qu, J.; Alexander, R.
S.; Brenneman, D. E.; Reitz, A. B. 2-Amino-3,4-dihydroquinazolines as
inhibitors of BACE-1 (beta-site APP cleaving enzyme): use of
structure based design to convert a micromolar hit into a nanomolar
lead. J. Med. Chem. 2007, 50 (18), 4261−4264. (e) Malamas, M. S.;
Erdei, J.; Gunawan, I.; Turner, J.; Hu, Y.; Wagner, E.; Fan, K.; Chopra,
R.; Olland, A.; Bard, J.; Jacobsen, S.; Magolda, R. L.; Pangalos, M.;
Robichaud, A. J. Design and synthesis of 5,5′-disubstituted amino-
hydantoins as potent and selective human beta-secretase (BACE1)
inhibitors. J. Med. Chem. 2010, 53 (3), 1146−1158.
Zega, A. Metabolism-directed optimisation of antithrombotics: the
prodrug principle. Curr. Pharm. Des 2006, 12 (1), 73−91.
(23) Kaller, M. R.; Harried, S. S.; Albercht, B.; Amarante, P.; Babu-
Khan, S.; Bartberger, M. D.; Brwon, J.; Brown, R.; Chen, K.; Cheng,
Y.; Citron, M.; Croghan, M. D.; Graceffa, R.; Hickman, D.; Judd, T.;
Kriemen, C.; La, D.; Li, V.; Lopez, P.; Luo, Y.; Masse, C.;
Monenschein, H.; Nguyen, T.; Pennington, L. D.; Miguel, T. S.;
Sickmier, E. A.; Wahl, R. C.; Weiss, M. M.; Wen, P. H.; Williamson,
T.; Wood, S.; Xue, M.; Yang, B.; Zhang, J.; Patel, V.; Zhong, W.;
Hitchcock, S. A potent and orally efficacious, hydroxyethylamine-based
inhibitor of β-secretase. ACS Med. Chem. Lett. [Online early access].
DOI: 10.1021/ml3000148. Published Online: April 22, 2012.
(24) (a) Ward, J. M.; Gorenstein, N. M.; Tian, J.; Martin, S. F.; Post,
C. B. Constraining binding hot spots: NMR and molecular dynamics
simulations provide a structural explanation for enthalpy-entropy
compensation in SH2-ligand binding. J. Am. Chem. Soc. 2010, 132
(32), 11058−11070. (b) Schneider, H.-J. In Protein−Ligand
Interactions: From Molecular Recognition to Drug Design; Bohm, H.-J.,
̈
Schneider, G., Eds; Wiley-VCH: Weinheim, Germany, 2003; pp 21−
50.
(25) (a) Turner, R. T., 3rd; Koelsch, G.; Hong, L.; Castanheira, P.;
Ermolieff, J.; Ghosh, A. K.; Tang, J. Subsite specificity of memapsin 2
(beta-secretase): implications for inhibitor design. Biochemistry 2001,
40 (34), 10001−10006. (b) Patel, S.; Vuillard, L.; Cleasby, A.; Murray,
C. W.; Yon, J. Apo and inhibitor complex structures of BACE (beta-
secretase). J. Mol. Biol. 2004, 343 (2), 407−416.
(13) Cole, D. C.; Bursavich, M. G. Nonpeptide BACE 1 Inhibitors:
Design and Synthesis. In Methods and Principles in Medicinal Chemistry;
Ghosh, A. K., Ed.; Wiley-VCH: Weinheim, Germany, 2010; Vol. 45,
pp 481−509.
(26) Hong, L.; Turner, R. T., 3rd; Koelsch, G.; Shin, D.; Ghosh, A.
K.; Tang, J. Crystal structure of memapsin 2 (beta-secretase) in
complex with an inhibitor OM00-3. Biochemistry 2002, 41 (36),
10963−10967.
(14) The Asp binding moiety would act as the pharmocaphore and
therefore be implemented into every compound henceforth. Thus, this
portion required the heaviest physiochemical design restrictions.
Wager, T. T.; Villalobos, A.; Verhoest, P. R.; Hou, X.; Shaffer, C. L.
Strategies to optimize the brain availability of central nervous system
drug candidates. Expert Opin. Drug Discovery 2011, 6, 371−381.
(15) Hitchcock, S. A.; Pennington, L. D. Structure−brain exposure
relationships. J. Med. Chem. 2006, 49 (26), 7559−7583.
(16) pKa values were calculated using the following: ACD LogD Suite,
version 10; Advanced Chemistry Development Inc.: Toronto, Canada.
(17) Benchmark compounds synthesized containing cores B and H
demonstrated efflux ratios of >40.
(18) Rajamani, R.; Reynolds, C. H. Modeling the protonation states
of the catalytic aspartates in beta-secretase. J. Med. Chem. 2004, 47
(21), 5159−5166.
(19) (a) Sidera, C.; Liu, C.; Austen, B. Pro-domain removal in ASP-2
and the cleavage of the amyloid precursor are influenced by pH. BMC
Biochem. 2002, 3, 25. (b) Dominguez, J. L.; Christopeit, T.; Villaverde,
M. C.; Gossas, T.; Otero, J. M.; Nystrom, S.; Baraznenok, V.;
Lindstrom, E.; Danielson, U. H.; Sussman, F. Effect of the protonation
state of the titratable residues on the inhibitor affinity to BACE-1.
Biochemistry 2010, 49 (34), 7255−7263.
(27) (a) Stachel, S. J.; Coburn, C. A.; Steele, T. G.; Jones, K. G.;
Loutzenhiser, E. F.; Gregro, A. R.; Rajapakse, H. A.; Lai, M. T.;
Crouthamel, M. C.; Xu, M.; Tugusheva, K.; Lineberger, J. E.; Pietrak,
B. L.; Espeseth, A. S.; Shi, X. P.; Chen-Dodson, E.; Holloway, M. K.;
Munshi, S.; Simon, A. J.; Kuo, L.; Vacca, J. P. Structure-based design of
potent and selective cell-permeable inhibitors of human beta-secretase
(BACE-1). J. Med. Chem. 2004, 47 (26), 6447−6450. (b) Coburn, C.
A.; Stachel, S. J.; Li, Y. M.; Rush, D. M.; Steele, T. G.; Chen-Dodson,
E.; Holloway, M. K.; Xu, M.; Huang, Q.; Lai, M. T.; DiMuzio, J.;
Crouthamel, M. C.; Shi, X. P.; Sardana, V.; Chen, Z.; Munshi, S.; Kuo,
L.; Makara, G. M.; Annis, D. A.; Tadikonda, P. K.; Nash, H. M.; Vacca,
J. P.; Wang, T. Identification of a small molecule nonpeptide active site
beta-secretase inhibitor that displays a nontraditional binding mode for
aspartyl proteases. J. Med. Chem. 2004, 47 (25), 6117−6119.
(28) van de Waterbeemd, H.; Camenisch, G.; Folkers, G.; Chretien,
J. R.; Raevsky, O. A. Estimation of blood−brain barrier crossing of
drugs using molecular size and shape, and H-bonding descriptors. J.
Drug Targeting 1998, 6 (2), 151−165.
(20) (a) Stachel, S. J.; Coburn, C. A.; Rush, D.; Jones, K. L.; Zhu, H.;
Rajapakse, H.; Graham, S. L.; Simon, A.; Katharine Holloway, M.;
Allison, T. J.; Munshi, S. K.; Espeseth, A. S.; Zuck, P.; Colussi, D.;
Wolfe, A.; Pietrak, B. L.; Lai, M. T.; Vacca, J. P. Discovery of
aminoheterocycles as a novel beta-secretase inhibitor class: pH
dependence on binding activity part 1. Bioorg. Med. Chem. Lett.
2009, 19 (11), 2977−2980. (b) Rajapakse, H. A.; Nantermet, P. G.;
Selnick, H. G.; Barrow, J. C.; McGaughey, G. B.; Munshi, S.; Lindsley,
S. R.; Young, M. B.; Ngo, P. L.; Holloway, M. K.; Lai, M. T.; Espeseth,
A. S.; Shi, X. P.; Colussi, D.; Pietrak, B.; Crouthamel, M. C.;
Tugusheva, K.; Huang, Q.; Xu, M.; Simon, A. J.; Kuo, L.; Hazuda, D.
J.; Graham, S.; Vacca, J. P. SAR of tertiary carbinamine derived BACE1
inhibitors: role of aspartate ligand amine pKa in enzyme inhibition.
Bioorg. Med. Chem. Lett. 2010, 20 (6), 1885−1889.
(29) (a) Obach, R. S. Nonspecific binding to microsomes: impact on
scale-up of in vitro intrinsic clearance to hepatic clearance as assessed
through examination of warfarin, imipramine, and propranolol. Drug
Metab. Dispos. 1997, 25 (12), 1359−1369. (b) Obach, R. S. Prediction
of human clearance of twenty-nine drugs from hepatic microsomal
intrinsic clearance data: an examination of in vitro half-life approach
and nonspecific binding to microsomes. Drug Metab. Dispos. 1999, 27
(11), 1350−1359. (c) Smith, D. A.; van de Waterbeemd, H.; Walker,
D. K. In Pharmacokinetics and Metabolishm in Drug Design; Mannhold,
R., Kubinyi, H., Folkers, G., Eds; Wiley-VCH: Weinheim, Germany,
2006; pp 165−177.
(30) The relatively low clearance of 11a is likely a result of high
plasma protein binding. The protein binding in rat plasma for 9u and
11a is 98% and 91.3%, respectively.
(21) Reynolds, D. P.; Lanevskij, K.; Japertas, P.; Didziapetris, R.;
Petrauskas, A. Ionization-specific analysis of human intestinal
absorption. J. Pharm. Sci. 2009, 98 (11), 4039−4054.
(31) Dineen, T. A.; Weiss, M. M.; Williamson, T.; Acton, P.; Babu-
Khan, S.; Bartberger, M. D.; Brown, J.; Chen, K.; Cheng, Y.; Citron,
M.; Croghan, M. D.; Dunn, R. T., 2nd; Esmay, J.; Graceffa, R. F.;
Harried, S. S.; Hickman, D.; Hitchcock, S. A.; Horne, D. B.; Huang,
H.; Imbeah-Ampiah, R.; Judd, T.; Kaller, M. R.; Kreiman, C. R.; La, D.
S.; Li, V.; Lopez, P.; Louie, S.; Monenschein, H.; Nguyen, T. T.;
Pennington, L. D.; San Miguel, T.; Sickmier, E. A.; Vargas, H. M.;
(22) (a) Kotthaus, J.; Hungeling, H.; Reeh, C.; Schade, D.; Wein, S.;
Wolffram, S.; Clement, B. Synthesis and biological evaluation of L-
valine-amidoximeesters as double prodrugs of amidines. Bioorg. Med.
Chem. 2011, 19 (6), 1907−1914. (b) Peterlin-Masic, L.; Cesar, J.;
M
dx.doi.org/10.1021/jm300598e | J. Med. Chem. XXXX, XXX, XXX−XXX