LETTER
Synthesis of 4-Quinolones
1641
O
O
Supporting Information for this article is available online at
cat. Ni(cod)2–Me3P
HNR1R2
r
t
iornat
Me
PhCl, K3PO4
NH
N
References
Me
Me
(1) For some selected reports, see: (a) Frutos, R. P.; Haddad, N.;
Houpis, I. N.; Johnson, M.; Smith-Keenan, L. L.; Fuchs, V.;
Yee, N. K.; Farina, V.; Faucher, A.-M.; Brochu, C.; Hache,
B.; Duceppe, J.-S.; Beaulieu, P. Synthesis 2006, 2563.
(b) Sato, M.; Motomura, T.; Aramaki, H.; Matsuda, T.;
Yamashita, M.; Ito, Y.; Kawakami, H.; Matsuzaki, Y.;
Watanabe, W.; Yamataka, K.; Ikeda, S.; Kodama, E.;
Matsuoka, M.; Shinkai, H. J. Med. Chem. 2006, 49, 1506.
(c) Nakamura, S.; Kozuka, M.; Bastow, K. F.; Tokuda, H.;
Nishino, H.; Suzuki, M.; Tatsuzaki, J.; Morris Natschke, S.
L.; Kuo, S.-C.; Lee, K.-H. Bioorg. Med. Chem. 2005, 13,
4396. (d) Hadjeri, M.; Peiller, E.-L.; Beney, C.; Deka, N.;
Lawson, M. A.; Dumontet, C.; Boumendjel, A. N. J. Med.
Chem. 2004, 47, 4964. (e) Koyama, J.; Toyokuni, I.;
Tagahara, K. Chem. Pharm. Bull. 1999, 47, 1038.
(2) For recent developments of Conrad–Limpach reaction, see:
(a) Zewge, D.; Chen, C.-Y.; Deer, C.; Dormer, P. G.;
Hughes, D. L. J. Org. Chem. 2007, 72, 4276. (b) Son, J. K.;
Kim, S. I.; Jahng, Y. Heterocycles 2001, 55, 1981.
(c) Giardina, G. A. M.; Sarau, H. M.; Farina, C.; Medhurst,
A. D.; Grugni, M.; Rveglia, L. F.; Schmidt, D. B.; Rigolio,
R.; Luttmann, M.; Vecchietti, V.; Hay, D. W. P. J. Med.
Chem. 1997, 40, 1794. (d) Ogata, Y.; Kawasaki, A.;
Tsujimura, K. Tetrahedron 1971, 27, 2765.
(3) For recent developments of Camps-type cyclization, see:
(a) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.;
Larsen, R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609.
(b) Jones, C. P.; Anderson, K. W.; Buchwald, S. L. J. Org.
Chem. 2007, 72, 7968. (c) Ding, D.; Li, X.; Wang, X.; Du,
Y.; Shen, J. Tetrahedron Lett. 2006, 47, 6997.
(4) For recent reports of 4-quinolone syntheses by using
transition-metal catalyst, see: (a) Zhao, T.; Xu, B. Org. Lett.
2010, 12, 212. (b) Yoshino, Y.; Kurahashi, T.; Matsubara, S.
J. Am. Chem. Soc. 2009, 131, 7494.
(5) See details in Supporting Information. For references of
Sugasawa reaction, see: (a) Atechian, S.; Nock, N.;
Norcross, R. D.; Ratni, H.; Thomas, A. W.; Verron, J.;
Masciadri, R. Tetrahedron 2007, 63, 2811. (b) Prasad, K.;
Lee, G. T.; Chaudhary, A.; Girgis, M. J.; Streemke, J. W.;
Repic, O. Org. Process Res. Dev. 2003, 7, 723. (c) Houpis,
I. N.; Molina, A.; Douglas, A. W.; Xavier, L.; Lynch, J.;
Volante, R. P.; Reider, P. J. Tetrahedron Lett. 1994, 35,
6811. (d) Sugasawa, T.; Toyoda, T.; Adachi, M.; Sasakura,
K. J. Am. Chem. Soc. 1978, 100, 4842.
(6) For a report on the formation of N-containing six-membered
rings via direct C(sp3)–H functionalization by nickel
catalysis, see: Nakao, Y.; Morita, H.; Idei, H.; Hiyama, T.
J. Am. Chem. Soc. 2011, 133, 3264.
(7) Ueno, S.; Shimizu, R.; Kuwano, R. Angew. Chem. Int. Ed.
2009, 48, 4543.
1a
2a
O
ref. 7
NR1R2
– HNR1R2
NH
Me
3
Scheme 1 A new synthetic route from 1a to 4-quinolone 2a via the
formation of β-enaminone 3
The reaction conditions were applied to the cyclization of
various o-(N-alkylamino)propiophenones (Table 2). The
reaction of 1b with 10 mol% of morpholine proceeded to
give 4-quinolone 2b in high yield (Table 2, entry 1). Tet-
rahydroquinoline 1c was smoothly cyclized to give tricy-
clic 4-quinolone 2c in 81% yield (entry 2). However, the
reaction of o-(N-ethylamino)propiophenone (1d) failed to
afford 2d (Table 2, entry 3), but 2d was successfully
formed by using two equivalents of morpholine (Table 2,
entry 4). In the reaction, β-enaminone 3d, which is consid-
ered as an intermediate for the formation of 2d, was re-
covered in 9% yield. The method using two equivalents of
morpholine was applicable to the reaction of N-butylated
substrate 1e (Table 2, entry 5). The N-benzyl-protected 4-
quinolone 2f was obtained in 70% yield (Table 2, entry 6).
In contrast, the reaction of 1g, possessing the bulkier iso-
propyl group on the nitrogen atom, gave undesirable β-en-
aminone 3g as the major product (Table 2, entry 7). The
compound 3g scarcely underwent transamination even
when the reaction was conducted for 120 hours. The cor-
responding 4-quinolone 2g was obtained from 3g by treat-
ment of the crude mixture with acetic acid (Table 2, entry
8).9 No cyclization of o-(N-methylamino)butyrophenone
occurred because 1,4-addition of morpholine was hin-
dered by the steric repulsion of the methyl group on the β-
carbon of the generated internal α,β-unsaturated ketones.
In conclusion, we successfully developed the nickel-cata-
lyzed intramolecular amination of o-(N-alkylamino)pro-
piophenones on the β-carbon. The reaction offers a new
synthetic route to pharmaceutically valuable 4-quino-
lones. The cyclization occurred through tandem catalytic
formation of β-enaminone from o-(N-alkylamino)propio-
phenone and an external secondary amine–intramolecular
transamination sequence.
(8) Recently, Pihko et al. reported that the carbon–carbon bond
formation at the -position of saturated carbonyl compounds
was achieved through a tandem palladium-catalyzed
dehydrogenation–1,4-addition sequence, see: Leskinen, M.
V.; Yip, K.-T.; Valkonen, A.; Pihko, P. M.
Acknowledgment
This work was supported by Grant-in-Aid for Scientific Research
on Innovative Areas ‘Molecular Activation Directed toward
Straightforward Synthesis’, the Global COE program ‘Science for
Future Molecular Systems’, and Young Scientists (B), from the Mi-
nistry of Education, Culture, Sports, Science and Technology, Ja-
pan. We acknowledge Prof. Tsutomu Katsuki for GCMS analyses.
J. Am. Chem. Soc. 2012, 134, 5750.
(9) The similar intramolecular transamination of β-enaminones
was known to occur by treatment with the Brønsted acid. For
the reference, see: Friary, R. J.; Seidl, V.; Schwerdt, J. H.;
Cohen, M. P.; Hou, D.; Nafissi, M. Tetrahedron 1993, 49,
7169.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 1639–1642