462 Keglevich et al.
of 30% hydrogen peroxide at 0◦C for 2 h on stir-
ring. The organic phase was washed with 3 × 10 mL
of water and dried (Na2SO4), and finally concen-
trated. The main component was obtained by col-
umn chromatography (silica gel, 3% methanol in
chloroform) to afford 0.69 g (80%) of 3a as a white
solid.
C4 CHMe2), 3.99 (m, 2H, C2 CHMe2), 6.85–8.15
ꢁ
ꢁ
(m, 10H, Ar); FAB-MS, 403 (M+H); (M + H)f+ound
=
403.2124, C27H31OP requires 403.2191.
3b: Yield: 1.11 g (76%); could be separated as a
crystalline compound, m.p. 155–157◦C (acetone); 31
P
NMR (CDCl3) ꢀ 25.6; 13C NMR (CDCl3) ꢀ 23.8, 24.4,
25.3 (CH(CH3)2), 30.4 (3 J = 3.6, C2 CHMe2), 34.6
ꢁ
3a: m.p. 156–158◦C (acetone); 31P NMR (CDCl3)
ꢀ 25.0 (99%); 13C NMR (CDCl3) ꢀ 120.4 (2 J = 6.0, C7)a,
121.8 (3 J = 11.1, C1a)b, 123.5 (3 J = 9.6, C10)a, 124.5
(C3)c, 124.7 (1 J = 128.1, C6a)d, 124.9 (C1)c, 128.1 (3 J =
(C4 CHMe2), 118.7 (1 J = 140.7, Cꢁ)c, 120.9 (2 J =
ꢁ
5.9, C7)a, 121.7 (3 J = 11.3, C1a)d, 123.0 (3 J = 13.4,
3
a
b
b
ꢁ
C3 ), 123.7 ( J = 8.9, C10) , 124.2 (C3) , 125.0 (C1) ,
127.0 (3 J = 14.6, C4)a, 129.1 (1 J = 125.3, C6a)c, 129.4
(3 J = 13.9, C8)a, 130.2 (C2)b, 132.0 (C9)b, 133.8 (2 J =
a
3
e
1
ꢁ
14.1, C4) , 128.4 ( J = 14.2, C3 ) , 129.3 ( J = 143.6,
d
3
a
2
d
2
ꢁ
ꢁ
ꢁ
C1 ) , 130.3 (C4 ), 130.7 ( J = 12.2, C8) , 131.9 ( J =
4.3, C10a) , 148.4 ( J = 8.2, C4a), 153.9 (C4 ), 156.5
e
c
c
2
2
1
11.0, C2 ) , 132.8 (C9) , 132.9 (C2) , 135.5 ( J = 5.3,
( J = 13.3, C2 ), a-dtentative assignment; H NMR
ꢁ
ꢁ
C
10a)b, 148.9 (2 J = 8.5, C4a), a-etentative assignment;
(CDCl3) ꢀ 1.00 (d, 3 JHH = 7.0, 6H, CH(CH3)2), 1.22 (d,
1H NMR (CDCl3) ꢀ 7.27–8.07 (m, 13H, Ar); FAB-MS,
293 (M+H); M+found = 292.0601, C18H14O2P requires
292.0653.
3 JHH = 6.5, 6H, CH(CH3)2), 1.31 (d, JHH = 7.0, 6H,
3
3
ꢁ
CH(CH3)2), 2.96 (sept, JHH = 7.0, 1H, C4 CHMe2),
ꢁ
3.89 (m, 2H, C2 CHMe2), 7.20–8.07 (m, 10H, Ar);
5: 31P NMR (CDCl3) ꢀ 32.7 (1%); 1H NMR (CDCl3)
ꢀ 6.46–8.04 (m, 18H, Ar), 9.03 (s, 1H, OH); FAB-MS,
371 (M+H).
FAB-MS, 419 (M+H); M+found = 418.1982, C27H31O2P
requires 418.2062.
6-2: 31P NMR (CDCl3) ꢀ 15.3; FAB-MS, 420
(M+H)
To the 20 mL dichloromethane solution of
4.26 mmol of phosphine 2a was added 2.6 mL
(5.12 mmol) of 2 M tetrahydrofuran solution of
dimethylsulfide borane at room temperature under
nitrogen and the mixture was stirred for 24 h. Evap-
oration of the volatile components led to 7a as pale
yellow solid. Yield: ∼100%.
7b: Yield: ∼100%; 31P NMR (CDCl3) ꢀ 101.9
(broad); 11B NMR (CDCl3) ꢀ −30.0 (broad); 13C NMR
(CDCl3) ꢀ; 23.9, 24.6, 25.7 (CH(CH3)2), 31.0 (3 J = 6.3,
C2 CHMe2), 34.5 (C4 CHMe2), 120.9 (2 J = 5.4, C7)a,
ꢁ
ꢁ
1
b
3
c
ꢁ
121.5 ( J = 50.5, C1 ) , 123.2 ( J = 9.8, C1a) , 123.4
3
3
a
d
ꢁ
( J = 8.8, C3 ), 124.0 ( J = 6.4, C10) , 124.2 (C3) , 125.1
(C1)d, 128.2 (3 J = 11.7, C4)a, 128.6 (1 J = 55.5, C6a)b,
130.0 (3 J = 14.7, C8)a, 130.6 (C2)d, 131.8 (C9)d, 134.2
7a: 31P NMR (CDCl3) ꢀ 93.7 (broad); 11B NMR
(CDCl3) ꢀ –36.2 (broad); 13C NMR (CDCl3) ꢀ 120.8
2
a
1
b
3
c
2
2
ꢁ
ꢁ
( J = 4.5, C7) , 123.1 ( J = 59.9, C1 ) , 123.4 ( J =
(C10a) , 149.2 ( J = 9.1, C4a), 153.7 (C4 ), 156.1 ( J =
10.0, C1a)c, 124.3 (3 J = 6.0, C10)a, 124.8 (C3)d, 125.4
12.0, C2 ), a-dtentative assignment; H NMR (CDCl3)
1
ꢁ
d
3
e
3
a
(C1) , 128.7 ( J = 10.0, C3 ) , 128.8 ( J = 13.3, C4) ,
ꢀ 1.02 (d, 3 JHH = 6.5, 6H, CH(CH3)2), 1.10 (d, 3 JHH
=
ꢁ
1
b
2
129.8 ( J = 41.0, C6a) , 130.7 (C4 ), 131.3 ( J = 11.5,
7, 6H, CH(CH3)2), 1.23 (d, 3 JHH = 7.0, 6H, CH(CH3)2),
ꢁ
e
3
a
d
d
ꢁ
ꢁ
ꢁ
C2 ) , 131.7 ( J = 18.9, C8) , 132.4 (C9) , 133.3 (C2) ,
135.0 (C10a)c, 149.4 (2 J = 12.6, C4a), a-etentative as-
signment; 1H NMR (CDCl3) ꢀ 7.06–7.96 (m, 13H, Ar);
FAB-MS, 277 (M–BH3+H).
2.87 (m, 1H, C4 CHMe2), 3.82 (m, 2H, C2 CHMe2),
7.08–7.85 (m, 10H, Ar); FAB-MS, 417 (M+H), 403
(M–BH3+H).
The Preparation of Pt-Complexes 8a and 8b
The Preparation of Triisopropylphenyl-
Oxaphosphorines 2b, 3b, and 7b
To 0.21 mmol of phosphinite 2 in 20 mL of ben-
zene, 0.10 g (0.21 mmol) of dichlorodibenzonitrile-
platinum was added and the mixture was stirred at
reflux for 1.5 h under nitrogen. Fractional crystalliza-
tion from the benzene solution furnished 8 as pale
yellow powder-like crystal.
2b, 3b, and 7b were prepared from 1 as described
for the 1→2a→3a→7a transformation.
2b: Yield: 1.4 g (82%); 31P NMR (CDCl3) ꢀ 112.0;
13C NMR (CDCl3) ꢀ 23.3, 23.7, 26.0 (CH(CH3)2), 31.4
ꢁ
ꢁ
(C2 CHMe2), 34.7 (C4 CHMe2), 120.9 (CH ), 122.3
8a: Yield: 60 mg (44%); in a purity of ca. 90%; 31
P
3
ꢁ
(CH ), 122.6 ( J = 3.6, C3 ), 123.2 (CH ), 123.6
NMR (CDCl3) ꢀ 76.8 (JPt-P = 4239); 1H NMR (CDCl3)
ꢀ 6.11–7.97 (m, 18H, Ar).
(CH ), 125.3 (CH ), 125.8 (3 J = 9.7, C1a)a, 128.0
1
b
8b: Yield: 50 mg (31%); in a purity of ca. 75%; 31
P
ꢁ
(CH ), 129.1 (CH ), 129.7 ( J = 31.3, C1 ) , 130.1
(CH ), 134.5 (2 J = 12.6, C10a)a, 138.6 (1 J = 26.4, C6a)b,
NMR (CDCl3) ꢀ 84.6 (JPt-P = 2900); 1H NMR (CDCl3) ꢀ
0.90 (d, 3 JHH = 6.5, 6H, CH(CH3)2), 1.02 (d, 3 JHH = 6.0,
152.5 (C4a), 152.9 (C4 ), 156.5 (C2 ), a,bmay be reversed;
ꢁ
ꢁ
3
1H NMR (CDCl3) ꢀ 1.12 (d, 3 JHH = 6.5, 6H, CH(CH3)2),
6H, CH(CH3)2), 1.15 (d, JHH = 6.5, 6H, CH(CH3)2),
3
3
ꢁ
1.26 (d, JHH = 7.0, 6H, CH(CH3)2), 1.37 (d, JHH
=
2.77 (sept, 3 JHH = 7.0, 1H, C4 CHMe2), 4.28 (m, 2H,
3
ꢁ
7.0, 6H, CH(CH3)2), 2.97 (sept, JHH = 7.0, 1H,
C2 CHMe2), 6.93–8.03 (m, 15H, Ar).