Paper
NJC
a coiled morphology, the neighbouring tolane groups stack Notes and references
in a chiral manner. The handedness of the CPL signals of the
hybrid silicas should be mainly dominated by the stacking
handedness of the neighbouring tolane groups.
1 (a) D. W. Zhang, M. Li and C. F. Chen, Chem. Soc. Rev., 2020,
49, 1331–1343; (b) T. Zhao, J. Han, P. Duan and M. Liu, Acc.
Chem. Res., 2020, 53, 1279–1292.
For a better understanding of the origin of the CPL signals,
CD and CPL spectra of (L, L)- and (D, D)-T were measured in
methanol at a concentration of 1.0 ꢂ 10ꢀ4 M. As shown in
Fig. 7c, the CD signal at 315 nm originated from the electron
transition within the tolane group and no CD signals
were observed at longer wavelength, indicating that there
was no chiral stacking among the tolane groups. The CPL
spectra showed that (L, L)- and (D, D)-T in methanol
exhibited weak negative and positive signals, respectively
(Fig. 7d). The signs of the signals were the same as those of
their CD signals. The CD and CPL signals at long wavelength
should originate from the electron transition within the
tolane group.
2 (a) T. Tanabe, T. Sato, K. Fukaishi and Y. Kakubari, SID Int.
Symp. Dig. Tech. Pap., 2015, 46, 987; (b) M. Li, S. H. Li,
D. Zhang, M. Cai, L. Duan, M. K. Fung and C. F. Chen,
Angew. Chem., Int. Ed., 2018, 57, 2889–2893.
3 (a) G. Yang, Y. Y. Xu, Z. D. Zhang, L. H. Wang, X. H. He,
Q. J. Zhang, C. Y. Hong and G. Zou, Chem. Commun., 2017,
53, 1735–1738; (b) D. Han, X. Yang, J. Han, J. Zhou, T. Jiao
and P. Duan, Nat. Commun., 2020, 11, 5659.
4 (a) J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard,
K. Hammerer, I. Cirac and E. S. Polzik, Nature, 2006, 443,
557–560; (b) H. Zheng, W. Li, W. Li, X. Wang, Z. Tang,
S. X. Zhang and Y. Xu, Adv. Mater., 2018, 30, 1705948.
5 (a) H. Jiang, D. Qu, C. Zou, H. Zheng and Y. Xu, New
J. Chem., 2019, 43, 6111–6115; (b) H. Yu, B. Zhao, J. Guo,
K. Pan and J. Deng, J. Mater. Chem. C, 2020, 8, 1459–1465;
(c) L. Zhang, H. X. Wang, S. Li and M. Liu, Chem. Soc. Rev.,
2020, 49, 9095–9120.
Conclusions
In summary, we have prepared a pair of tolane-conjugated
dipeptides, (L, L)-T and (D, D)-T, and two single-handed helical
hybrid silicas, (L, L)-T-SiO2 and (D, D)-T-SiO2, through a dynamic
supramolecular templating approach. The xerogels of the
self-assemblies of the sodium salts of (L, L)-T and (D, D)-T
showed good CPL performance with glum values of ꢀ2.3 ꢂ
10ꢀ3 and +1.1 ꢂ 10ꢀ3, and the FF values of 53.1% and 51.7%,
respectively. (L, L)-T-SiO2 and (D, D)-T-SiO2 exhibited enhanced
CPL activities with inversed handedness (+4.4 ꢂ 10ꢀ3 and
ꢀ5.4 ꢂ 10ꢀ3), and high fluorescence efficiency with FF values
of 56.7% and 56.3%, respectively. It was found that
silica covering induced intensity enhancement and handedness
inversion of the CPL signals of the supramolecular
assemblies, due to the change of the arrangement of the tolane
groups.
6 D. Yang, P. Duan, L. Zhang and M. Liu, Nat. Commun., 2017,
8, 15727.
7 T. Harada, N. Kajiyama, K. Ishizaka, R. Toyofuku, K. Izumi,
K. Umemura, Y. Imai, N. Taniguchi and K. Mishima, Chem.
Commun., 2014, 50, 11169–11172.
8 (a) J. Kumar, T. Nakashima and T. Kawai, J. Phys. Chem.
Lett., 2015, 6, 3445–3452; (b) H. Li, B. Li and B. Tang, Chem.
– Asian J., 2019, 14, 674–688; (c) F. Song, Z. Zhao, Z. Liu,
J. W. Y. Lam and B. Z. Tang, J. Mater. Chem. C, 2020, 8,
3284–3301; (d) Y. Sang, J. Han, T. Zhao, P. Duan and M. Liu,
Adv. Mater., 2020, 32, 1900110.
9 (a) S. H. Chen, D. Katsis, A. W. Schmid, J. C. Mastrangelo,
T. Tsutsui and T. N. Blanton, Nature, 1999, 397, 506–508;
(b) B. A. S. Jose and K. Akagi, Polym. Chem., 2013, 4, 5144–5161;
(c) X. Li, W. Hu, Y. Wang, Y. Quan and Y. Cheng, Chem.
Commun., 2019, 55, 5179–5182; (d) B. Ni, Y. Li, W. Liu, B. Li,
H. Li and Y. Yang, Chem. Commun., 2021, 57, 2796–2799.
10 (a) J. Chen, Y. Chen, L. Zhao, L. Feng, F. Xing, C. Zhao,
L. Hu, J. Ren and X. Qu, J. Mater. Chem. C, 2019, 7,
13947–13952; (b) Z.-B. Sun, J.-K. Liu, D.-F. Yuan,
Z.-H. Zhao, X.-Z. Zhu, D.-H. Liu, Q. Peng and C.-H. Zhao,
Angew. Chem., Int. Ed., 2019, 58, 4840–4846.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
11 K. Okano, M. Taguchi, M. Fujiki and T. Yamashita, Angew.
Chem., Int. Ed., 2011, 50, 12474–12477.
This work was supported by the National Natural Science
Foundation of China (21875152 and 22071166), the Natural
Science Foundation of the Jiangsu Higher Education Institutions
of China (20KJA430009), the Open Fund of the State Key
Laboratory of Luminescent Materials and Devices, South China
University of Technology (No. 2020-skllmd-02), the Open Fund
of Guangdong Provincial Key Laboratory of Luminescence
from Molecular Aggregates, Guangzhou 510640, China
(South China University of Technology) (2019B030301003), the
Project of Scientific and Technologic Infrastructure of Suzhou
(SZS201905), and the Priority Academic Program Development of
Jiangsu High Education Institutions (PAPD).
12 (a) N. Saleh, B. Moore, II, M. Srebro, N. Vanthuyne,
L. Toupet, J. A. G. Williams, C. Roussel, K. K. Deol,
G. Muller, J. Autschbach and J. Crassous, Chem. – Eur. J.,
2015, 21, 1673–1681; (b) Y. Zhang, D. Yang, J. Han, J. Zhou,
Q. Jin, M. Liu and P. Duan, Langmuir, 2018, 34, 5821–5830.
13 (a) K. Takaishi, K. Iwachido and T. Ema, J. Am. Chem. Soc.,
2020, 142, 1774–1779; (b) L. B. Wang, N. Suzuki, J. Liu,
T. Matsuda, N. A. A. Rahim, W. Zhang, M. Fujiki,
Z. B. Zhang, N. C. Zhou and X. L. Zhu, Polym. Chem.,
2014, 5, 5920–5927.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021