Journal of the American Chemical Society
Article
Richardson, A. VLSI Design 2008, 9 pages DOI: 10.1155/2008/
437879. (i) Zhang, Y.; Wnag, H.; Nie, J.; Zhang, Y.; Shen, G.; Yu, R.
Biosens. Bioelectron. 2009, 25, 34. (j) Maurer, K.; Yazvenko, N.;
Wilmoth, J.; Cooper, J.; Lyon, W.; Danley, D. Sensors 2010, 10, 7371.
(k) Li, X.; Tian, Y.; Xia, P.; Luo, Y.; Rui, Q. Anal. Chem. 2009, 81,
8249. (l) Chan, E. W. L.; Yousaf, M. N. ChemPhysChem 2007, 8, 1469.
nucleophile for the reaction. The conjugate-addition strategy
was confined by controlling the placement of the “Michael
acceptor” on the array. These reactions were problematic
because of their reversibility. When an acrylate acceptor was
used on the array, the retro-conjugate addition could be
stopped when the reactions were run at a pH = 4. For a
maleimide acceptor, the reversibility of the conjugate addition
could not be stopped. The use of a Cu(I)-catalyzed addition of
the thiol nucleophile to a arylbromide surface on the array did
not suffer from these issues. The reactions were confined with
the use of air as an oxidant for the Cu(I)-catalyst generated on
the array. With this chemistry, an RGD-peptide was site-
selectively placed on a 12K-array along with a second non-
RGD-peptide. Once there, binding of the peptide to its integrin
receptor was monitored in “real-time” with the use of an
electrochemical impedance experiment. The work demon-
strates the potential for microelectrode arrays as a platform for
analyzing peptide-based molecular libraries.
(4) For reviews see: (a) Gyurcsan
́ ́
yi, R. E.; Jagerszki, G.; Kiss, G.;
Toth, K. Bioelectrochemistry 2004, 63, 207. (b) Roberts, W. S.;
́
Lonsdale, D. J.; Griffiths, J.; Higson, S. P. J. Biosens. Bioelectron. 2007,
23, 301. (c) Scanning Electrochemical Microscopy, 2nd ed.; Bard, A. J.,
Mirkin, M. V., Eds.; Marcel Dekker, Inc.: New York, NY, 2001.
(5) For examples using macroscopic electrodes see: (a) Dykstra, P.
H.; Roy, V.; Byrd, C.; Bentley, W. E.; Ghodssi, R. Anal. Chem. 2011,
83, 5920. (b) Murata, M.; Gonda, H.; Yano, K.; Kuroki, S.; Suzutani,
T.; Katayama, Y. Bioorg. Med. Chem. Lett. 2004, 14, 137.
(6) For related references with ion-channel mimic sensors see:
(a) Endo, A.; Hyashita, T. J. Ion Exch. 2008, 19, 110. (b) Wirtz, M.;
Martin, C. R. Sensors Update 2002, 11, 35. (c) OdashimaK.Sugawar-
aM.UmezawaY. Channel Mimetic Sensing Membranes Based on
Host−Guest Molecular Recognition by Synthetic Receptors. ACS
Symposium Series 561; American Chemical Society: Washington, DC,
1994; p 123 (d) Yue, M.; Zhu, X.; Zheng, Y.; Hu, T.; Yang, L.; Wu, X.
Electrochim. Acta 2012, 73, 78. (e) Malecka, K.; Grabowska, I.;
ASSOCIATED CONTENT
* Supporting Information
■
S
Full experimental and characterization data for all substrates
and products; copies of proton and carbon NMR spectra are
included. This material is available free of charge via the
́
Radecki, J.; Stachyra, A.; Gora-Sochacka, A.; Sirko, A.; Radecka, H.
Electroanalysis 2012, 24, 439. (f) Zhy, J.; Qin, Y.; Zhang, Y. Anal.
Chem. 2010, 82, 436. (g) Xu, Y.; Bakker, E. Langmuir 2009, 25, 568.
(h) Kurzatkowska, K.; Dolusic, E.; Dehaen, W.; Sieron
́
-Stoltny, K.;
Sieron, A.; Radecka, H. Anal. Chem. 2009, 81, 7397. (i) Komura, T.;
́
Yamaguchi, T.; Kura, K.; Tanabe, J. J. Electroanal. Chem. 2002, 523,
126. (j) Odashima, K.; Kotato, M.; Sugawara, M.; Umezawa, Y. Anal.
Chem. 1993, 65, 927.
(7) For recent examples and a list of references to earlier work see:
(a) Tanabe, T.; Bi, B.; Hu, L.; Maurer, K.; Moeller, K. D. Langmuir
2012, 28, 1689. (b) Bi, B.; Huang, R. Y. C.; Maurer, K.; Chen, C.;
Moeller, K. D. J. Org. Chem. 2011, 76, 9053.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(8) For examples see reference 7a as well as: (a) Tesfu, E.; Roth, K.;
Maurer, K.; Moeller, K. D. Org. Lett. 2006, 8, 709. (b) Stuart, M.;
Maurer, K.; Moeller, K. D. Bioconjugate Chem. 2008, 19, 1514.
(9) (a) Cain, M.; Kulkarni, V. V.; Hruby, J. J. Peptides and
Peptidomimetics. In Textbook of Drug Design and Discovery, 4th ed;
Krogsgaard-Larsen, P., Stroemgaard, K., Madsen, U., Eds.; CRC Press:
Boca Raton, 2010; p 123. (b) Vagner, J.; Qu, H.; Hruby, V. J. Curr.
Opin. Chem. Biol. 2008, 12, 292.
(10) For a review see: Lowe, A. B. Polym. Chem. 2010, 1, 17.
(11) For the use of base-catalyzed esterification reactions to place
molecules onto an array see: (a) Tesfu, E.; Roth, K.; Maurer, K.;
Moeller, K. D. Org. Lett. 2006, 8, 709. (b) Tesfu, E.; Maurer, K.;
Ragsdale, S. R.; Moeller, K. D. J. Am. Chem. Soc. 2004, 126, 6212.
(c) Tesfu, E.; Maurer, K.; McShae, A.; Moeller, K. D. J. Am. Chem. Soc.
2006, 128, 70.
(12) For a preliminary account of this work please see reference 8b.
(13) For the use of Pd(0) to place molecules onto an array see:
(a) Tian, J.; Maurer, K.; Tesfu, E.; Moeller, K. D.. J. Am. Chem. Soc.
2005, 127, 1392. (b) Tian, J.; Maurer, K.; Moeller, K. D. Tetrahedron
Lett. 2008, 49, 5664. (c) Hu, L.; Maurer, K.; Moeller, K. S. Org. Lett.
2009, 11, 1273. (d) Hu, L.; Stuart, M.; Tian, J.; Maurer, K.; Moeller, K.
D. J. Am. Chem. Soc. 2010, 132, 16610.
(14) For the use of Cu(I) to place molecules onto an array see:
(a) Bartels, J. L.; Lu, P.; Walker, A.; Maurer, K.; Moeller, K. D. Chem.
Commun. 2009, 5573. (b) Bartels, J.; Lu, P.; Maurer, K.; Walker, A. V.;
Moeller, K. D. Langmuir 2011, 27, 11199.
ACKNOWLEDGMENTS
■
We thank the National Science Foundation (CHE-0809142)
for their generous support of our work. We also gratefully
acknowledge the Washington University High Resolution
NMR facility, partially supported by NIH Grants RR02004,
RR05018, and RR07155, and the Washington University Mass
Spectrometry Resource Center, partially supported by
NIHRR00954, for their assistance.
REFERENCES
■
(1) For a description of the chips used here see: Dill, K.;
Montgomery, D. D.; Wang, W.; Tsai, J. C. Anal. Chim. Acta 2001,
444, 69 1k chips: electrode diameter = 92 μm; distance between the
Pt-electrodes (rectangular cells) = 245.3 and 337.3 μm; 12k slide:
diameter = 44 μm; distance between the Pt-electrodes (square cells) =
33 μm..
(2) Microelectrode arrays can be purchased from CustomArray, Inc.,
18916 North Creek Parkway, Suite 115, Bothell, WA 98011 (www.
(3) For alternative approaches see: (a) Sullivan, M. G.; Utomo, H.;
Fagan, P. J.; Ward, M. D. Anal. Chem. 1999, 71, 4369. (b) Zhang, S.;
Zhao, H.; John, R. Anal. Chim. Acta 2000, 421, 175. (c) Hintsche, R.;
Albers, J.; Bernt, H.; Eder, A. Electroanalysis 2000, 12, 660.
(d) Gardner, R. D.; Zhou, A.; Zufelt, N. A. Sens. Actuators, B 2009,
136, 177. (e) Beyer, M.; Nesterov, A.; Block, I.; Konig, K.;
̈
(15) Lambert, J. D.; Rice, J. E.; Hong, J.; Hou, Z.; Yang, C. S. Bioorg.
Felgenhauer, T.; Fernandez, S.; Leibe, K.; Torralba, G.; Hausmann,
M.; Trunk, U.; Lindenstruth, V.; Bischoff, F. R.; Stadler, V.; Breitling,
F. Science 2007, 318, 1888. (f) Devaraj, N. K.; Dinolfo, P. H.; Chidsey,
C. E. D.; Collman, J. P. J. Am. Chem. Soc. 2006, 128, 1794.
(g) Wassum, K. M.; Tolosa, V. M.; Wang, J.; Walker, E.;
Monbouquette, H. G.; Maidment, N. T. Sensors 2008, 8, 5023.
(h) Kerkoff, H. G.; Zhang, X.; Mailly, F.; Nouet, P.; Liu, H.;
Med. Chem. Lett. 2005, 15, 873−876.
(16) Hu, L.; Bartels, J. L.; Bartels, J. W.; Maurer, K.; Moeller, K. D. J.
Am. Chem. Soc. 2009, 131, 16638 The cross-linked polymer has pore
sizes on the order of 19 3 nm..
(17) Shafir, A.; Lichtor, P. A.; Buchwald, S. L. J. Am. Chem. Soc. 2007,
129, 3490.
16897
dx.doi.org/10.1021/ja308121d | J. Am. Chem. Soc. 2012, 134, 16891−16898