5554
S.-S.P. Chou, J.-L. Huang / Tetrahedron Letters 53 (2012) 5552–5554
E
E
H
In summary, we have successfully transformed the terminal al-
kenes 3a–c to the ,b-unsaturated esters 4a–c by cross metathesis
H
H
a
H
( )n
( )n
N
N
(CM). After detosylation the amides 5a–c can undergo the intramo-
lecular aza-Michael reaction to give sulfur-substituted bicyclic
compounds 6a–c, the stereoselectivity of which is determined by
the size of the newly formed ring. With simple transformations
we have also achieved the synthesis of indolizidine 167E from
compound 6a.
O
O
PhS
PhS
A
6b, 6c
E = CO2Me
n = 1, 2
H
H
Acknowledgements
H
H
E
E
( )n
( )n
N
N
Financial support by the National Science Council of the Repub-
lic of China (NSC 97-2113-M-030-001-MY3 and NSC 100-2113-M-
030-007) is gratefully acknowledged.
O
O
PhS
PhS
B
Scheme 4. Stereospecific formation of trans-6b and 6c.
Supplementary data
Supplementary data associated with this article can be found,
SPh
SPh
N
SPh
N
LiAlH4 (3.5 eq), THF
H
H
H
N
O
O
O
−78 oC to −10 oC, 2.5 h
References and notes
CO2Me
OH
OH
8b (32%)
6a cis/trans (1 : 1)
8a (35%)
1. Rubiralta, M.; Giralt, E.; Diez, E. Structure, Preparation, Reactivity and Synthetic
Applications of Piperidine and its Derivatives; Elsevier: Amsterdam, 1991.
2. (a) Boger, D. L.; Weinreb, S. M. Hetero Diels–Alder Methodology in Organic
Synthesis; Academic: Orlando, FL, 1987; (b) Laschat, S.; Dickner, T. Synthesis
2000, 1781–1813; (c) Jorgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 3558–
3588; (d) Buonora, P.; Olsen, J.-C.; Oh, T. Tetrahedron 2001, 57, 6099–6138.
3. (a) Daly, J. W.; Spande, T. F. In Alkaloids: Chemical and Biological Perspectives;
Pelletier, S. W., Ed.; Wiley: New York, NY, 1986; vol. 3,. Chapter 1 For a recent
review, see: (b) Michael, J. P. Nat. Prod. Rep. 2005, 22, 603–626.
Scheme 5. Reduction of cis- and trans-6a.
4. (a) Chou, S. S. P.; Hung, C. C. Tetrahedron Lett. 2000, 41, 8323–8326; (b) Chou, S.
S. P.; Hung, C. C. Synthesis 2001, 2450–2462.
5. (a) Chou, S. S. P.; Chiu, H. C.; Hung, C. C. Tetrahedron Lett. 2003, 44, 4653–4655;
(b) Chou, S. S. P.; Ho, C. W. Tetrahedron Lett. 2005, 46, 8551–8554; (c) Chou, S. S.
P.; Liang, C. F.; Lee, T. M.; Liu, C. F. Tetrahedron 2007, 63, 8267–8273; (d) Chou,
S. S. P.; Liu, C. F. J. Chin. Chem. Soc. 2010, 57, 811–819; (e) Chou, S. S. P.; Cai, Y. L.
Tetrahedron 2011, 67, 1183–1186; (f) Chou, S. S. P.; Yang, T. H.; Wu, W. S.; Chiu,
T. H. Synthesis 2011, 759–763; (g) Chou, S. S. P.; Wu, C. J. J. Tetrahedron 2012, 68,
1185–1191; (h) Chou, S. S. P.; Lu, C. L.; Hsu, Y. H. J. Chin. Chem. Soc. 2012, 59,
365–372; (i) Chou, S. S. P.; Wu, C. J. J. Tetrahedron 2012, 68, 5025–5030.
6. (a) Choi, T.-L.; Lee, C. W.; Chatterjee, A. K.; Grubbs, R. H. J. Am. Chem. Soc. 2001,
123, 10417–10418; (b) Choi, T.-L.; Chatterjee, A. K.; Grubbs, R. H. Angew. Chem.,
Int. Ed. 2001, 40, 1277–1279; (c) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.;
Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360–11370; (d) Lesma, G.;
Colombo, A.; Sacchetti, A.; Silvani, A. J. Org. Chem. 2009, 74, 590–596; (e)
Fustero, S.; Jimenez, D.; Rosello, M. S.; Pozo, C. D. J. Am. Chem. Soc. 2007, 129,
6700–6701; (f) Coquerel, Y.; Rodriguez, J. Eur. J. Org. Chem. 2008, 1125–1132.
7. For some recent reviews, see: (a) Xu, L.-W.; Xia, C.-G. Eur. J. Org. Chem. 2005,
633–639; (b) Enders, D.; Wang, C.; Liebich, J. X. Chem. Eur. J. 2009, 15, 11058–
11076; (c) Reyes, E.; Fernandez, M.; Uria, U.; Vicario, J. L.; Badia, D.; Carrillo, L.
Curr. Org. Chem. 2012, 16, 521–546.
8. For some recent examples, see: (a) Ghorai, M. K.; Halder, S.; Das, R. K. J. Org.
Chem. 2010, 75, 7061–7072; (b) Cai, Q.; Zheng, C.; You, S.-L. Angew. Chem., Int.
Ed. 2010, 49, 8666–8669; (c) Fustero, S.; Monteagudo, S.; Sanchez-Rosello, M.;
Flores, S.; Barrio, P.; del Pozo, C. Chem. Eur. J. 2010, 16, 9835–9845; (d) Fustero,
S.; del Pozo, C.; Mulet, C.; Lazaro, R.; Sanchez-Rosello, M. Chem. Eur. J. 2011, 17,
14267–14272; (e) Zhong, C.; Wang, Y.; Hung, A. W.; Schreiber, S. L.; Young, D.
W. Org. Lett. 2011, 13, 5556–5559.
9. (a) Forman, G. S.; McConnell, A. E.; Tooze, R. P.; van Rensburg, W. J.; Meyer, W.
H.; Kirk, M. M.; Dwyer, C. L.; Serfontein, D. Organometallics 2005, 24, 4528–
4542; (b) Chou, C.-Y.; Hou, D.-R. J. Org. Chem. 2006, 71, 9887–9890; (c) Chen, L.-
J.; Hou, D.-R. Tetrahedron Asymmetry 2008, 19, 715–720.
Figure 2. X-ray crystal structure of compound 8a.
SPh
N
SPh
1) PBr3 (6 eq), ClCH2CH2Cl, reflux, 3 h
H
H
O
N
O
2) Bu3SnH (1.1eq), AIBN (0.4 eq)
Tol, reflux, 2 h
OH
8a
9 (62%)
1) MeMgBr (4 eq), THF
H
H
reflux, 5 h
Raney-Ni (20 eq)
N
O
N
95% EtOH
reflux, 2 h
2) AcOH, 0 oC, 10 min
3) NaBH4 (10 eq), MeOH
0 oC, 2 h
Indolizidine 167E
(59%)
10 (66%)
10. Parsons, A. F.; Pettifer, R. M. Tetrahedron Lett. 1996, 37, 1667–1670.
11. (a) McAlonan, H.; Stevenson, P. J.; Thompson, N.; Treacy, A. B. Synlett 1997,
1359–1360; (b) Toyooka, N.; Yotsui, Y.; Yoshida, Y.; Momose, T.; Nemoto, H.
Tetrahedron 1999, 55, 15209–15229; (c) Potts, D.; Stevenson, P. J.; Thompson,
N. Tetrahedron Lett. 2000, 41, 275–278; (d) McAlonan, H.; Potts, D.; Stevenson,
P. J.; Thompson, N. Tetrahedron Lett. 2000, 41, 5411–5414; (e) Yu, S.; Pu, X.;
Cheng, T.; Wang, R.; Ma, D. Org. Lett. 2006, 8, 3179–3182.
12. (a) Eliel, E. L. Stereochemistry of Carbon Compounds; New York: Mc-Graw-Hill,
1962. pp. 151-152, 237-238; (b) Seeman, J. I. Chem. Rev. 1983, 83, 83–134.
13. (a) Yuguchi, M.; Tokuda, M.; Orito, K. Bull. Chem. Soc. Jpn. 2004, 77, 1031–1032;
(b) Bates, R. W.; Song, P. Synthesis 2009, 655–659.
Scheme 6. Synthesis of indolizidine 167E.
reduced the C@C bond to give product 10. Following a reported
procedure,13 the treatment of compound 10 with methylmagne-
sium bromide, followed by acidification with acetic acid, and
reduction with sodium borohydride, gave indolizidine 167E, which
was isolated from the venom of the ant Solenopsis (Diplorhoptrum)
conjurata.14 Only two syntheses of indolizidine 167E have been
reported.15
14. Jones, T. H.; Hight, R. J.; Blum, M. S.; Fales, H. M. J. Chem. Ecol. 1984, 10, 1233–
1249.
15. (a) Takahata, H.; Bandoh, H.; Momose, T. Tetrahedron 1993, 49, 11205–11212;
(b) Randl, S.; Blechert, S. J. Org. Chem. 2003, 68, 8879–8882.