Page 3 of 4
Journal of the American Chemical Society
Chem. Soc. 1983, 105, 6129. (b) Hatanaka, Y.; Hiyama, T. J. Am.
undergoing transmetalation between aryloxorhodium and one
Chem. Soc. 1990, 112, 7793. (c) Falck, J. R.; Bhatt, R. K.; Ye, J.
J. Am. Chem. Soc. 1995, 117, 5973. (d) Boudier, A.; Knochel, P.
Tetrahedron Lett. 1999, 40, 687. (e) Hölzer, B.; Hoffmann, R. W.
Chem. Commun. 2003, 732. (f) Imao, D.; Glasspoole, B. W.;
Laberge, V. S.; Crudden, C. M. J. Am. Chem. Soc. 2009, 131,
5024. (g) Awano, T.; Ohmura, T.; Suginome, M. J. Am. Chem.
Soc. 2011, 133, 20738 and the references cited therein.
1
2
3
4
5
6
7
8
of the phenyl groups on the silicon from intermediate A,
transmetalation with the cleavage of the biphenyl–silicon
bond gives arylrhodium species E, protonolysis of which with
1a provides 3a along with regeneration of aryloxorhodium A.
Scheme 2. Proposed pathways for the conversion of [Rh]–Ph to
aryloxorhodium A: (a) early stage of the catalysis, (b) late stage
of the catalysis
(4) Desymmetrization of diaryl sulfoxides by stoichiometric
asymmetric sulfoxide–magnesium exchange has been reported:
Hampel, T.; Ruppenthal, S.; Sälinger, D.; Brückner, R. Chem.
Eur. J. 2012, 18, 3136.
(a)
CO2Et
CO2Et
O
O
!-H
elim
[Rh]
[Rh]
9
[Rh] Ph
[Rh]
H
OEt
OEt
(5) For reviews on asymmetric synthesis of silicon-stereogenic
organosilanes, see: (a) Xu, L.-W.; Li, L.; Lai, G.-Q.; Jiang, J.-X.
Chem. Soc. Rev. 2011, 40, 1777. (b) Oestreich, M. Synlett 2007,
1629. For selected examples of the utility of silicon-stereogenic
oragnosilanes, see: (c) Rendler, S.; Auer, G.; Oestreich, M.
Angew. Chem., Int. Ed. 2005, 44, 7620. (d) Rendler, S.; Auer, G.;
Keller, M.; Oestreich, M. Adv. Synth. Catal. 2006, 348, 1171. (e)
Rendler, S.; Oestreich, M.; Butts, C. P.; Lloyd-Jones, G. C. J. Am.
Chem. Soc. 2007, 129, 502. (f) Klare, H. F. T.; Oestreich, M.
Angew. Chem., Int. Ed. 2007, 46, 9335.
(6) For examples of catalytic asymmetric preparation of silicon-
stereogenic organosilanes, see: (a) Hayashi, T.; Yamamoto, K.;
Kumada, M. Tetrahedron Lett. 1974, 15, 331. (b) Corriu, R. J. P.;
Moreau, J. J. E. J. Organomet. Chem. 1975, 85, 19. (c) Ohta, T.;
Ito, M.; Tsuneto, A.; Takaya, H. J. Chem. Soc., Chem. Commun.
1994, 2525. (d) Corriu, R. J. P.; Moreau, J. J. E. Tetrahedron Lett.
1973, 14, 4469. (e) Corriu, R. J. P.; Moreau, J. J. E. J. Organomet.
Chem. 1976, 120, 337. Yasutomi, Y.; Suematsu, H.; Katsuki, T. J.
Am. Chem. Soc. 2010, 132, 4510. (f) Shintani, R.; Moriya, K.;
Hayashi, T. J. Am. Chem. Soc. 2011, 133, 16440. (g) Shintani, R.;
Moriya, K.; Hayashi, T. Org. Lett. 2012, 14, 2902. (h) Shintani,
R.; Otomo, H.; Ota, K.; Hayashi, T. J. Am. Chem. Soc. 2012, 134,
7305. See also: (i) Tamao, K.; Nakamura, K.; Ishii, H.;
Yamaguchi, S.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 12469.
(j) Schmidt, D. R.; O’Malley, S. J.; Leighton, J. L. J. Am. Chem.
Soc. 2003, 125, 1190. (k) Igawa, K.; Takada, J.; Shimono, T.;
Tomooka, K. J. Am. Chem. Soc. 2008, 130, 16132.
(7) Hiyama and Nakao developed related, but structurally different,
hydroxy-tethered tetraorganosilanes as transmetalating reagents
for palladium-catalyzed cross-coupling reactions and rhodium-
catalyzed conjugate addition reactions. For leading references,
see: (a) Nakao, Y.; Imanaka, H.; Sahoo, A. K.; Yada, A.;
Hiyama, T. J. Am. Chem. Soc. 2005, 127, 6952. (b) Nakao, Y.;
Chen, J.; Tanaka, M.; Hiyama, T. J. Am. Chem. Soc. 2007, 129,
11694. (c) Nakao, Y.; Takeda, M.; Matsumoto, T.; Hiyama, T.
Angew. Chem., Int. Ed. 2010, 49, 4447. (d) Nakao, Y.; Chen, J.;
Imanaka, H.; Hiyama, T.; Ichikawa, Y.; Duan, W.-L.; Shintani,
R.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 9137. (e) Shintani,
R.; Ichikawa, Y.; Hayashi, T.; Chen, J.; Nakao, Y.; Hiyama, T.
Org. Lett. 2007, 9, 4643.
(8) For nonasymmetric preparation and utility of dibenzooxasilines,
see: (a) Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131,
10844. See also: (b) Krasnova, T. L.; Chernyshev, E. A.;
Sergeev, A. P.; Abramova, E. S. Russ. Chem. Bull. 1997, 46,
1487. (c) Kirillova, N. I.; Cusev, A. I.; Sharapov, V. A.;
Afanasova, O. B.; Zubarev, Y. E.; Alekseev, N. V.; Chernyshev,
E. A.; Struchkov, Y. T. J. Organomet. Chem. 1986, 306, 55 and
the references cited therein.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
+
B
C
Ph
H
CO2Et
1a
1a
Ph
CO2Et
CO2Et
+
+
A
A
H
Ph
(b)
CO2Et
O
[Rh]
Ph
CO2Et
Ph
1a
Ph
+
[Rh] Ph
A
OEt
Ph
Ph
D
Scheme 3. Proposed reaction pathway for the reaction of 1a to
give 3a
transmetalation
OSi(t-Bu)Ph2
O
[Rh]
[Rh]
Si(t-Bu)Ph2
A
E
3a
1a
In summary, we have developed
a
rhodium-catalyzed
asymmetric synthesis of silicon-stereogenic dibenzooxasilines
through enantioselective transmetalation of prochiral
organosilanes. High enantioselectivities have been achieved
by employing (S,S)-Me-Duphos as the ligand, successfully
demonstrating the proof-of-principle for “enantioselective
transmetalation”. Future studies will explore further expansion
of the scope of the present catalysis as well as development of
related asymmetric reactions.
ACKNOWLEDGMENT. Support has been provided in part
by a Grant-in-Aid for Young Scientists (B), the MEXT, Japan,
and in part by the Asahi Glass Foundation. E.E.M. thanks
JSPS for postdoctoral fellowship.
SUPPORTING INFORMATION. Experimental procedures
and compound characterization data (PDF) and X-ray data
(CIF). This material is available free of charge via the Internet
REFERENCES
(1) For recent reviews, see: (a) Chem. Soc. Rev. 2011, 40, 4877–
5208 (Beller, M., Ed.; themed issue for cross-coupling reactions
in organic synthesis). (b) J. Organomet. Chem. 2002, 653, 1–133
(Tamao, K., Hiyama, T., Negishi, E., Eds.; special issue for
cross-coupling). (c) Handbook of Organopalladium Chemistry
for Organic Synthesis; Negishi, E., Ed.; Wiley: Hoboken, NJ,
2002.
(2) For recent reviews, see: (a) Berthon-Gelloz, G.; Hayashi, T. In
Boronic Acids, 2nd ed; Hall, D. G., Ed.; Wiley-VCH: Weinheim,
Germany, 2011; p 263. (b) Edwards, H. J.; Hargrave, J. D.;
Penrose, S. D.; Frost, C. G. Chem. Soc. Rev. 2010, 39, 2093.
(3) Use of enantio-enriched α-chiral organometallic reagents for
stereospecific cross-coupling reactions has been reported. For
selected examples, see: (a) Labadie, J. W.; Stille, J. K. J. Am.
(9) (a) Werner, H.; Bosch, M.; Schneider, M. E.; Hahn, C.; Kukla,
F.; Manger, M.; Windmüller, B.; Weberndörfer, B.; Laubender,
M. J. Chem. Soc., Dalton Trans. 1998, 3549. See also: (b) Tran,
D. N.; Cramer, N. Angew. Chem., Int. Ed. 2011, 50, 11098.
(10) (a) Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518. (b) Burk, M.
J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc.
1993, 115, 10125.
(11) The same trend was observed for (S,S)-Chiraphos when 10
mol % (1.25 equiv to Rh) was used, giving compound 2a in 91%
yield with 0% ee (see Table 1, entry 9 for comparison), but no
significant change of ee was observed for (R)-Binap, (R)-H8-
ACS Paragon Plus Environment