10.1002/anie.202110173
Angewandte Chemie International Edition
RESEARCH ARTICLE
Angew. Chem. 2015, 127, 7731-7735; e) J. Zhang, P. Yu, S.-Y. Li, H.
Sun, S.-H. Xiang, J. Wang, K. N. Houk, B. Tan, Science 2018, 361,
1087; f) C. Gelis, G. Levitre, J. Merad, P. Retailleau, L. Neuville, G.
Masson, Angew. Chem. Int. Ed. 2018, 57, 12121-12125; Angew. Chem.
2018, 130, 12297-12301; g) C. J. Thomson, D. M. Barber, D. J. Dixon,
Angew. Chem. Int. Ed. 2019, 58, 2469-2473; Angew. Chem. 2019, 131,
2491-2495.
J. Elsegood, J. Org. Chem. 1995, 60, 6431-6440; c) S. Matsumoto, M.
Ishii, K. Kimura, K. Ogura, Bull. Chem. Soc. Jpn. 2004, 77, 1897-1903.
[20] a) E. J. Corey, J. O. Link, J. Am. Chem. Soc. 1992, 114, 1906-1908; b)
T. S. Snowden, ARKIVOC, 2012, (ii), 24-40. For catalytic asymmetric
variants, see: c) S. Meninno, A. Vidal-Albalat, A. Lattanzi, Org. Lett.
2015, 17, 4348-4351; d) E. Ogino, A. Nakamura, S. Kuwano, T. Arai,
Org. Lett. 2021, 23, 1980-1985.
[5]
[6]
a) G. Sakata, K. Makino, Y. Kurasawa, Heterocycles 1988, 27, 2481-
2515; b) T. Kristoffersen, J. H. Hansen, Chem. Heterocycl. Compd.
2017, 53, 310-312.
[21] a) A. Russo, G. Galdi, G. Croce, A. Lattanzi, Chem. Eur. J. 2012, 18,
6152-6157; b) S. Meninno, A. Capobianco, A. Peluso, A. Lattanzi,
Green Chem. 2015, 17, 2137-2140; c) S. Meninno, C. Volpe, A.
Lattanzi, Chem. Eur. J. 2017, 23, 4547-4550.
a) J. P. Kleim, R. Bender, R. Kirsch, C. Meichsner, A. Paessens, M.
Rösner, H. Rübsamen-Waigmann, R. Kaiser, M. Wichers, K. E.
Schneweis, Antimicrob. Agents Chemother. 1995, 39, 2253-2257; b) J.
Ren, C. E. Nichols, P. P. Chamberlain, K. L. Weaver, S. A. Short, J. H.
Chan, J.-P. Kleim, D. K. Stammers, J. Med. Chem. 2007, 50, 2301-
2309.
[22] For a single example of Lewis-acid mediated ring-opening reaction,
see: R. F. W. Jackson, S. F. C. Dunn, A. McCamley, W. Clegg, Org.
Biomol. Chem. 2003, 1, 2527-2530.
[23] a) K. S. Pandit, R. V. Kupwade, P. V. Chavan, U. V. Desai, P. P.
Wadgaonkar, K. M. Kodam, ACS Sustainable Chem. Eng. 2016, 4,
3450-3464; b) S. Hourcade, A. Ferdenzi, P. Retailleau, S. Mons, C.
Marazano, Eur. J. Org. Chem. 2005, 1302-1310.
[7]
T. P. C. Rooney, P. Filippakopoulos, O. Fedorov, S. Picaud, W. A.
Cortopassi, D. A. Hay, S. Martin, A. Tumber, C. M. Rogers, M. Philpott,
M. Wang, A. L. Thompson, T. D. Heightman, D. C. Pryde, A. Cook, R.
S. Paton, S. Müller, S. Knapp, P. E. Brennan, S. J. Conway, Angew.
Chem. Int. Ed. 2014, 53, 6126-6130; Angew. Chem. 2014, 126, 6240-
6244.
[24] For selected examples, see: a) D. P. Curran, L. H. Kuo, J. Org. Chem.
1994, 59, 3259-3261; b) T.-Y. Liu, J. Long, B.-J. Li, L. Jiang, R. Li, Y.
Wu, L.-S. Ding, Y.-C. Chen, Org. Biomol. Chem. 2006, 4, 2097-2099; c)
K. Bera, I. N. N. Namboothiri, Chem. Commun. 2013, 49, 10632-10634;
d) S. Diosdado, R. López, C. Palomo, Chem. Eur. J. 2014, 20, 6526-
6531; e) H. Zhang, C. Jiang, J.-P. Tan, H.-L. Hu, Y. Chen, X. Ren, H.-S.
Zhang, T. Wang, ACS Catal. 2020, 10, 5698−5706; f) L. Yang, J.-Q.
Zhao, Y. You, Z.-H. Wang, W.-C. Yuan, Chem. Commun. 2020, 56,
12363-12366.
[8]
[9]
J. J. Chen, W. Qian, K. Biswas, V. N. Viswanadhan, B. C. Askew, S.
Hitchcock, R. W. Hungate, L. Arik, E. Johnson, Bioorg. Med. Chem.
Lett. 2008, 18, 4477-4481.
G. A. Carter, T. Clark, C. S. James, R. S. T. Loeffler, Pestic. Sci. 1983,
14, 135-144.
[10] a) C. T. Eary, Z. S. Jones, R. D. Groneberg, L. E. Burgess, D. A.
Mareska, M. D. Drew, J. F. Blake, E. R. Laird, D. Balachari, M.
O'Sullivan, A. Allen, V. Marsh, Bioorg. Med. Chem. Lett. 2007, 17,
2608-2613; b) S. Tanimori, T. Nishimura, M. Kirihata, Bioorg. Med.
Chem. Lett. 2009, 19, 4119-4121.
[25] a) B. M. Trost, P. Quayle, J. Am. Chem. Soc. 1984, 106, 2469-2471; b)
W. Adam, L. Hadjiarapoglou, Tetrahedron Lett. 1992, 33, 469-470; c) A.
K. Saikia, S. Tsuboi, J. Org. Chem. 2001, 66, 643-647.
[26] When using a monosubstituted ortho-phenylendiamine, an inseparable
mixture of both regioisomeric heterocycles in nearly 50/50 ratio, was
observed.
[11] For selected examples, see: a) S. Li, X. Tian, D. M. Hartley, L. A. Feig,
J. Neurosci. 2006, 26, 1721-1729; b) R. P. Law, S. J. Atkinson, P.
Bamborough, C.-w. Chung, E. H. Demont, L. J. Gordon, M. Lindon, R.
K. Prinjha, A. J. B. Watson, D. J. Hirst, J. Med. Chem. 2018, 61, 4317-
4334.
[27] G. Xu, G. Yang, Y. Wang, P.-L. Shao, J. N. N. Yau, B. Liu, Y. Zhao, Y.
Sun, X. Xie, S. Wang, Y. Zhang, L. Xia, Y. Zhao, Angew. Chem. Int. Ed.
2019, 58, 14082-14088; Angew. Chem. 2019, 131, 14220-14226.
[28] Heterocycle (R)-3y was obtained, as confirmed by optical rotation
measurement.
[12] a) H. Fu, Y. Jiang, Q. Jiang, D. Jiang, Y. Zhao, Synlett 2007, 1836-
1842; b) S. Tanimori, H. Kashiwagi, T. Nishimura, M. Kirihata, Adv.
Synth. Catal. 2010, 352, 2531-2537; c) S. Luo, J. K. De Brabander,
Tetrahedron Lett. 2015, 56, 3179-3182.
[29] A. Antenucci, S. Dughera, P. Renzi, ChemSusChem 2021, 14, 2785-
2853.
[30] For selected examples, see: a) L. Qiu, F. Y. Kwong, J. Wu, W. H. Lam,
S. Chan, W.-Y. Yu, Y.-M. Li, R. Guo, Z. Zhou, A. S. C. Chan, J. Am.
Chem. Soc. 2006, 128, 5955-5965; b) W. Tang, L. Xu, Q.-H. Fan, J.
Wang, B. Fan, Z. Zhou, K.-H. Lam, A. S. C. Chan, Angew. Chem. Int.
Ed. 2009, 48, 9135-9138; Angew. Chem. 2009, 121, 9299-9302; c) J.
Qin, F. Chen, Z. Ding, Y.-M. He, L. Xu, Q.-H. Fan, Org. Lett. 2011, 13,
6568-6572; d) D. Cartigny, F. Berhal, T. Nagano, P. Phanasavath, T.
Ayad, P. Genêt, T. Ohshima, K. Mashima, V. Ratovelomanana-Vidal, J.
Org. Chem. 2012, 77, 4544-4556; e) S. Fleischer, S. Zhou, S.
Werkmeister, K. Junge, M. Beller, Chem. Eur. J. 2013, 19, 4997-5003;
f) A. N. Kim, B. M. Stoltz, ACS Catal. 2020, 10, 13834−13851; g) J.
Zhang, J. Wei, W.-Y. Ding, S. Li, S.-H. Xiang, B. Tan, J. Am. Chem.
Soc. 2021, 143, 6382-6387.
[13] a) Y. M. Lee, Y. S. Park, Heterocycles 2009, 78, 2233-2244; b) Y. Kim,
K. J. Park, Y. S. Choi, M.-S. Lee, Y. S. Park, Bull. Korean Chem. Soc.
2013, 34, 2531-2534.
[14] For a recent approach minimizing racemization, see: D. Li, T. Ollevier,
Eur. J. Org. Chem. 2019, 1273-1280.
[15] For selected examples, see: a) J. L. Nunez-Rico, A. Vidal-Ferran, Org.
Lett. 2013, 15, 2066-2069; b) M.-W. Chen, Z. Deng, Q. Yang, J. Huang,
Y. Peng, Org. Chem. Front. 2019, 6, 746-750.
[16] a) M. Rueping, F. Tato, F. R. Schoepke, Chem. Eur. J. 2010, 16, 2688-
2691; b) Z.-Y. Xue, Ya. Jiang, X.-Z. Peng, W.-C. Yuan, X.-M. Zhang,
Adv. Synth. Catal. 2010, 352, 2132-2136; c) F. Shi, W. Tan, H.-H.
Zhang, M.Li, Q. Ye, G.-H. Ma, S.-J. Tu, G. Li, Adv. Synth. Catal. 2013,
355, 3715-3726; d) Z.-B. Zhao, X. Li, M.-W. Chen, Z. K. Zhao, Y.-G.
Zhou, Chem. Commun. 2020, 56, 7309-7312.
[31] a) B. Mennucci, WIREs Comput. Mol. Sci. 2012, 2, 386-404; b) J.
Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3093.
[32] M. N. Grayson, K. N. Houk, J. Am. Chem. Soc. 2016, 138, 9041-9044.
[33] J. Guo, M. W. Wong, J. Org. Chem. 2017, 82, 4362-4368.
[17] a) C. J. Abraham, D. H. Paull, M. T. Scerba, J.W. Grebinski, T. Lectka,
J. Am. Chem. Soc. 2006, 128, 13370-13371. For a similar approach,
see: b) R. Huang, X. Chen, C. Mou, G. Luo, Y. Li, X. Li, W. Xue, Z. Jin,
Y. R. Chi, Org. Lett. 2019, 21, 4340-4344. For a photo-organocatalytic
approach, see: J. Rostoll-Berenguer, G. Blay, M. C. Muñoz, J. R. Pedro,
C. Vila, Org. Lett. 2019, 21, 6011-6015.
[18] a) Aziridines and Epoxides in Organic Synthesis (Ed.: A. K., Yudin),
Wiley-VCH: Weinheim, Germany, 2006; b) J. Marco-Contelles, M.T.
Molina, S. Anjum, Chem. Rev. 2004, 104, 2857-2900; c) C.-Y. D.
Huang, A. G. Doyle, Chem. Rev. 2014, 114, 8153-8198; d) S. Meninno,
A. Lattanzi, Chem. Eur. J. 2016, 22, 3632- 3642.
[19] a) M. Baudy, A. Robert, A. Foucaud, J. Org. Chem. 1978, 43, 3732-
3736; b) R. F. W. Jackson, N. J. Palmer, M. J. Wythes, W. Clegg, M. R.
7
This article is protected by copyright. All rights reserved.