This work was financially supported by the National Science
Foundation of China (No. 21172092 and 20972057).
Notes and references
1 (a) A. Krief and L. Hevesi, Organoselenium Chemistry, Springer
Verlag, Berlin, 1988, vol. 1; (b) S. Patai and Z. Rappoport, The
Chemistry of Organic Selenium and Tellurium Compounds, vol. 1
and 2, 1986; (c) R. J. Cremlyn, An Introduction to Organo-Sulfur
Chemistry, Wiley & Sons, New York, NY, 1996.
Scheme 3 Suzuki reaction of 4a with 4-MeOC6H4B(OH)2.
2 (a) I. P. Beletskaya and V. P. Ananikov, Chem. Rev., 2011,
111, 1596; (b) M. Wang, K. Ren and L. Wang, Adv. Synth. Catal.,
2009, 351, 1586.
3 (a) V. P. Reddy, A. V. Kumar, K. Swapna and K. R. Rao, Org.
Lett., 2009, 11, 951; (b) K. Ajiki, M. Hirano and K. Tanaka, Org.
Lett., 2005, 7, 4193; (c) B. C. Ranu, T. Mandal and S. Samanta,
Org. Lett., 2003, 5, 1439; (d) D. Singh, E. E. Alberto, O. E.
D. Rodrigues and A. L. Braga, Green Chem., 2009, 11, 1521;
(e) T. Nishino, M. Okada, T. Kuroki, T. Watanabe, Y. Nishiyama
and N. Sonoda, J. Org. Chem., 2002, 67, 8696.
4 (a) G. Bartoli, G. Bencivenni and R. Dalpozzo, Chem. Soc. Rev.,
2010, 39, 4449; (b) S. Cacchi and G. Fabrizi, Chem. Rev., 2005,
105, 2873; (c) G. R. Humphrey and J. T. Kuethe, Chem. Rev., 2006,
106, 2875.
5 (a) J.-R. Weng, C.-H. Tsai, S. K. Kulp and C.-S. Chen, Cancer
Lett., 2008, 262, 153; (b) G. La Regina, M. C. Edler, A. Brancale,
S. Kandil, A. Coluccia, F. Piscitelli, E. Hamel, G. De Martino,
R. Matesanz, J. F. Dıaz, A. I. Scovassi, E. Prosperi, A. Lavecchia,
´
E. Novellino, M. Artico and R. Silvestri, J. Med. Chem., 2007,
50, 2865; (c) C. D. Funk, Nat. Rev. Drug Discovery, 2005, 4, 664.
6 (a) I. Ninomiya, C. Hashimoto, T. Kiguchi, T. Naito, D. H. R.
Barton, X. Lusinchi and P. Milliet, J. Chem. Soc., Perkin Trans. 1,
1990, 707; (b) P. Hamel and P. Preville, J. Org. Chem., 1996,
´
61, 1573; (c) M. Matsugi, K. Murata, K. Gotanda, H. Nambu,
G. Anilkumar, K. Matsumoto and Y. Kita, J. Org. Chem., 2001,
66, 2434; (d) K. M. Schlosser, A. P. Krasutsky, H. W. Hamilton,
J. E. Reed and K. Sexton, Org. Lett., 2004, 6, 819; (e) Y. Maeda,
M. Koyabu, T. Nishimura and S. Uemura, J. Org. Chem., 2004,
69, 7688; (f) X.-L. Fang, R.-Y. Tang, P. Zhong and J.-H. Li,
Synthesis, 2009, 4183; (g) Y. Chen, C.-H. Cho, F. Shi and
R. C. Larock, J. Org. Chem., 2009, 74, 6802; (h) Y. Chen,
C.-H. Cho and R. C. Larock, Org. Lett., 2009, 11, 173;
(i) Y.-J. Guo, R.-Y. Tang, J.-H. Li, P. Zhong and X.-G. Zhang,
Adv. Synth. Catal., 2009, 351, 2615; (j) H.-A. Du, R.-Y. Tang,
C.-L. Deng, Y. Liu, J.-H. Li and X.-G. Zhang, Adv. Synth. Catal.,
2011, 353, 2739.
Scheme 4 Proposed reaction mechanism and related experiments.
which could not be isolated owing to the fast reaction of A to B.
The reaction process for the generation of 6a was through an
elimination of HBr from 1a to intermediate A in the presence of
t-BuOLi, followed by an intramolecular nucleophilic addition
of nitrogen to the carbon–carbon triple bond of A to give
intermediate B, which underwent a cleavage of the sulfonamide
linkage with the assistance of t-BuOÀ to generate 6a (Scheme 4,
eqn (3)). For the sequential 3-selenylation of 6a, the reaction of
PhSeSePh (2a) with I2 afforded an electrophilic species PhSeI
(7a), which was followed by an electrophilic addition to the
indole moiety, providing intermediate C. After deprotonation
of C, the final product 3a was generated, along with the release
of HI, which was oxidized by DMSO to generate H2O,
dimethylsulfide and regenerated I2 for the next run (Scheme 4,
eqn (4) and (5)).16 For further verification, the obtained 6a was
reacted with 2a under the present reaction conditions, giving
3a in 92% yield.
7 G. Chelucci, Chem. Rev., 2012, 112, 1344 and references cited
therein.
8 (a) Y.-Q. Fang and M. Lautens, J. Org. Chem., 2008, 73, 538;
(b) Y.-Q. Fang and M. Lautens, Org. Lett., 2005, 7, 3549;
(c) A. Fayol, Y.-Q. Fang and M. Lautens, Org. Lett., 2006,
8, 4203; (d) M. Nagamochi, Y.-Q. Fang and M. Lautens, Org.
Lett., 2007, 9, 2955; (e) Y.-Q. Fang, J. Yuen and M. Lautens,
J. Org. Chem., 2007, 72, 5152.
9 J. Yuen, Y.-Q. Fang and M. Lautens, Org. Lett., 2006, 8, 653.
10 (a) C. S. Bryan and M. Lautens, Org. Lett., 2008, 10, 4633;
(b) Z.-J. Wang, J.-G. Yang, F. Yang and W. Bao, Org. Lett.,
2010, 12, 3034; (c) X.-R. Qin, X.-F. Cong, D.-B. Zhao, J.-S. You
and J.-B. Lan, Chem. Commun., 2011, 47, 5611.
11 T. O. Vieira, L. A. Meaney, Y.-L. Shi and H. Alper, Org. Lett.,
2008, 10, 4899.
12 M. Arthuis, R. Pontikis and J.-C. Florent, Org. Lett., 2009,
11, 4608.
13 (a) S. G. Newman, V. Aureggi, C. S. Bryan and M. Lautens, Chem.
Commun., 2009, 5236; (b) S. G. Newman and M. Lautens, J. Am.
Chem. Soc., 2010, 132, 11416.
14 W. Chen, Y. Zhang, L. Zhang, M. Wang and L. Wang, Chem.
Commun., 2011, 47, 10476.
In conclusion, a novel, efficient and facile route for the synthesis
of 2-bromo-3-selenylindoles and 2-bromo-3-sulfenylindoles via a
tandem one-pot reaction of 2-(gem-dibromovinyl)-N-methyl-
sulfonylanilines with diphenyldiselenide and diphenyldisulfide
was developed. The reactions were carried out in the presence
of t-BuOLi in DMSO, combined with a catalytic amount of I2
under transition-metal-free conditions, and generated the
desired products in good yields with high regio-selectivity.
The reaction was also extended to the preparation of 2-chloro-
3-selenylindoles and 2-chloro-3-sulfenylindoles from the corres-
ponding 2-(gem-dichlorovinyl)-N-methylsulfonylanilines. Further
investigation on the application of this strategy and a detailed
reaction mechanism is currently underway.
15 (a) M. Okutani and Y. Mori, J. Org. Chem., 2009, 74, 442;
(b) H. Xu, S. Gu, W. Chen, D. Li and J. Dou, J. Org. Chem.,
2011, 76, 2448.
16 (a) P. F. Ranken and B. G. McKinnie, J. Org. Chem., 1989,
54, 2985; (b) P. Hamel, J. Org. Chem., 2002, 67, 2854.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.