A.A. Shoukry, M.S. Mohamed / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 96 (2012) 586–593
593
[21] S.S. Karki, S. Thota, S.Y. Darj, J. Balzarini, E. De Clercq, Bioorg. Med. Chem. 15
(2007) 6632.
[22] O. Zava, S.M. Zakeeruddin, C. Danelon, H. Vogel, M. Grätzel, P.J. Dyson,
ChemBioChem 10 (2009) 1796.
[23] E.J. Gao, T.D. Sun, S.H. Liu, S. Ma, Z. Wen, Y. Wang, M.C. Zhu, L. Wang, X.N. Gao,
F. Guan, M.J. Guo, F.C. Liu, Eur. J. Med. Chem. 45 (2010) 4531.
[24] L. Kumar, N.R. Kandasamy, T.S. Srivastava, A.J. Amonkar, M.K. Adwankar, M.P.J.
Chitnis, Inorg. Biochem. 23 (1985) 1.
the two complexes to CT-DNA suggests an electrostatic and/or
groove binding mode. The relatively higher Kb value observed for
complex (2) could be attributed to the possibility of piperazine
rings for resting in the minor groove of GC base pairs as reported
previously [28,29], an aspect that could be of significance for the
actual binding ability of this complex with DNA.
[25] D. Pucci, A. Bellusci, S. Bernardini, R. Bloise, A. Crispini, G. Federici, P. Liguori,
M.F. Lucas, N. Russo, A. Valentini, Dalton Trans. (2008) 5897.
[26] Z. Guo, P.J. Sadler, E. Zang, Chem. Commun. 27 (1997).
[27] U. Frey, J.D. Ranford, P.J. Sadler, Inorg. Chem. 32 (1993) 1333.
[28] G.R. Clark, C.J. Squire, E.J. Gray, W. Leupin, S. Neidle, Nucleic Acids Res. 24
(1996) 4882–4889.
[29] A.L. Satz, C.M. White, T.A. Beerman, T.C. Bruice, Biochemistry 40 (2001) 6465–
6474.
[30] A.A. shoukry, T. Rau, M.M. Shoukry, R. van eldik, J. Chem. Soc. Dalton Trans.
(1998) 3105–3112.
[31] A.A. Shoukry, M. brindel, R. van Eldik, Dalton Trans. (2007) 4169–4174.
[32] M.M. Shoukry, A.A. Shoukry, P.A. Khalaf Alla, S.S. Hassan, Int. J. Chem. Kinet. 42
(10) (2010) 608.
[33] J. Bolger, A. Gourdon, E. Ishow, J.P. Launay, Inorg. Chem. 35 (1996) 2937–2944.
[34] E. Ishow, A. Gourdon, J.P. Launay, Chem. Commun. (1998) 1909.
[35] D. Liu, K. Kwasniewska, B. Environ, Contam. Toxicol. 27 (1981) 289–294.
[36] P. Zhao, J.W. Huang, W.J. Mei, J. He, L.N. Ji, Spectrochim. Acta Part A Mol.
Biomol. Spectrosc. 75 (2010) 1108–1114.
The small change in thermal denaturation temperature of DNA
(DTm) after binding of both complexes also supports the electro-
static and/or groove binding mode. Redox couple of the two com-
plexes (1) and (2) was assigned as quasi-reversible from their
cyclic voltammetric data. The obvious negative peak potential shift
observed by the addition of DNA also supports the electrostatic
interaction of the positively charged complexes with the polyan-
ionic DNA. The results obtained from gel electrophoresis also
supported the binding of our complexes with CT-DNA. The antimi-
crobial tests showed that both complexes exhibited antimicrobial
properties, and they were found to be more active against Gram-
negative than Gram-positive bacteria.
We concluded that the two complexes exhibits strong binding
ability to DNA which points to the promising properties of the
Pd(II) amine complexes as model anticancer agents .
[37] M. Yodoshi, M. Odoko, N. Okabe, Chem. Pharm. Bull. 55 (2007) 853–860.
[38] M.S. Mohamed, A.A. Shoukry, A.G. Ali, Spectrochim. Acta Part A: Mol. Biomol.
Spectrosc. 86 (2012) 562–570.
[39] A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am.
Chem. Soc. 111 (1989) 3053–3063.
Acknowledgements
[40] A. Dimitrakopoulou, C. Dendrinou-Samara, A.A. Pantazaki, M. Alexiou, E.
Nordlander, D.P. Kessissoglou, J. Inorg. Biochem. 102 (2008) 618–628.
[41] E.T. Mudasir, D.H. Wahyuni, N. Tjahjono, H. Yoshioka, Inoue, Spectrochim. Acta
Part A: Mol. Biomol. Spectrosc. 77 (2010) 528–534.
[42] B. Norden, F. Tjerneld, FEBS Lett. 67 (1976) 368–370.
[43] M. Cory, D.D. McKee, J. Kagan, D.W. Henry, J.A. Miller, J. Am. Chem. Soc. 107
(1985) 2528.
[44] D.H. Tjahjono, T. Akutsu, N. Yoshioka, H. Inoue, Biochem. Biophys. Acta 1472
(1999) 333.
[45] D.H. Tjahjono, T. Yamamoto, S. Ichimoto, N. Yoshioka, H. Inoue, J. Chem. Soc.,
Perkin Trans. (2000) 3077.
[46] D.H. Tjahjono, S. Mima, T. Akutsu, N. Yoshioka, H. Inoue, J. Inorg. Biochem. 85
(2001) 219.
[47] Y. An, S.-D. Liu, S.-Y. Deng, L.-N. Ji, Z.-W. Mao, J. Inorg. Biochem. 100 (2006)
1586.
[48] I. Haq Bhat, S. Tabassum, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 72
(2009) 1026–1033.
[49] Z.Q. Liu, Y.T. Li, Z.Y. Wu, S.F. Zhang, Inorg. Chim. Acta 362 (2009) 71–77.
[50] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Wiley, NewYork, 1980. p.
219.
The authors gratefully acknowledge the valuable help of Prof.
Dr. Bahgat E. El-Anadouli and Ayat G. Ali. Department of Chemistry,
Faculty of Science, Cairo University, Egypt.
References
[1] N. Chitrapriya, V. Mahalingam, M. Zeller, K. Natarajan, Inorg. Chim. Acta 363
(2010) 3685–3693.
[2] M.C. Prabhakara, B. Basavaraju, H.S. Bhojyanaikl, Bioinorg. Chem. Appl. (2007).
[3] K.E. Erkkila, D.T. Odom, J.K. Barton, Chem. Rev. 99 (1999) 277.
[4] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 31 (1992) 9319.
[5] B. Rosenberg, L. Van Camp, T. Krigas, Nature 205 (1965) 698–699.
[6] Y.P. Ho, S.C.F. Au-Yeung, K.K.W. To, Med. Res. Rev. 23 (2003) 633–655.
[7] I. Kostova, Recent Pat. Anti-can. Drug Discov. 1 (2006) 1–22.
[8] M.A. Jakupec, M. Galanski, B.K. Keppler, Rev. Physiol. Biochem. P 146 (2003) 1–
53.
[9] E. Wong, C.M. Giandomenico, Chem. Rev. 99 (1999) 2451–2466.
[10] M.M. Shoukry, A.A. Shoukry, M.N. Hafez, J. Coord. Chem. 63 (4) (2010) 652.
[11] A. Divsalar, A.A. Saboury, R. Yousefi, A.A. Moosavi-Movahedi, H. Mansoori-
Torshizi, Int. J. Biol. Macromol. 40 (4) (2007) 381–386.
[12] R. B. Martin, in: S. J. Lippard (Ed.), Platinum, Gold and Other Chemotherapeutic
Agents, Washington, DC, ACS Symposium Series No. 209 (1993) p. 231.
[13] M.P. Hacker, E.B. Douple, I.H. Krakoff, in: M.A. Nijhoff (Ed.), Platinum
Coordination Complexes in Cancer Chemotherapy. Boston, 1984, p. 267.
[14] G. Marcon, S. Carotti, M. Coronnello, L. Messori, E. Mini, P. Orioli, T. Mazzel,
M.A. Cinellu, G. Minghetti, J. Med. Chem. 45 (2002) 1672.
[51] M. Aslanoglu, Anal. Sci. 22 (2006) 439.
[52] N. Li, Y. Ma, C. Yang, L. Guo, X. Yan, Biophys. Chem. 116 (2005) 199.
[53] A. Shah, M. Zaheer, R. Qureshi, Z. Akhter, M.F. Nazar, Spectrochim. Acta Part A:
Mol. Biomol. Spectrosc. 75 (2010) 1082–1087.
[54] M.T. Carter, A.J. Bard, J. Am. Chem. Soc. 109 (1987) 7528–7531.
[55] H. Mansuri-Torshizi, T.S. Srivastava, S.J. Chavan, M.P. Chitnis, J. Inorg. Biochem.
48 (1992) 63.
[56] H. Mansouri-Torshizi, R. Mital, T.S. Srivastava, H.K. Parekh, M.P. Chitnis, J.
Inorg. Biochem. 44 (1991) 239–247.
[57] H. zipper, H. Brunner, J. Bernhagen, F. Vitzthum, Nucleic Acids Res. 32 (12)
(2004) e103.
[15] A. Casini, M.A. Cinellu, G. Minghetti, C. Gabbiani, M. Coronnello, E. Mini, L.
Messori, J. Med. Chem. 49 (2006) 5524.
[16] V. Rajendiran, R. Karthik, M. Palaniandavar, H. Stoeckli-Evans, V.S. Periasamy,
M.A. Akbarsha, B.S. Srinag, H. Krishnamurthy, Inorg. Chem. 46 (2007) 8208.
[17] M.S. Balakrishna, D. Suresh, A. Rai, J.T. Mague, D. Panda, Inorg. Chem. 49 (2010)
8790.
[58] K. Umemura, F. Nagami, T. Okada, R. Kuroda, Nucleic Acids Res. 28 (2000) E39.
[59] B.C. Baguley, M. Le Bret, Biochemistry 23 (1984) 937.
[60] A.L. Koch, Clin. Microbiol. Rev. 16 (2003) 673.
[61] H. Nikaido, T. Nakae, Adv. Microb. Physiol. 20 (1979) 163.
[62] N.R.W. Brown, Resistance of Peseudomonas aeruginosa, John Wiley, 1975. 71.
[63] E.M. Hodnett, A.W. Wu, F.A. French, Eur. J. Med. Chem. Chem. Ther. 13 (1987).
[64] A.A. El-Sherif, Inorg. Chim. Acta 362 (2009) 4991–5000.
[18] E. Gao, M. Zhu, L. Liu, Y. Huang, L. Wang, C. Shi, W. Zhang, Y. Sun, Inorg. Chem.
49 (2010) 3261.
[19] H. Mansouri-Torshizi, M. Moghaddam, A. Divsalar, A.A. Saboury, Bioorg. Med.
Chem. 16 (2008) 9616.
[20] R. Bieda, I. Ott, M. Dobroschke, A. Prokop, R. Gust, W.S. Sheldrick, J. Inorg.
Biochem. 103 (2009) 698.