Journal of the American Chemical Society
Communication
O. J. Am. Chem. Soc. 2005, 127, 13154. (d) Chen, X.; Goodhue, C. E.;
Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634. (e) Chen, M. S.; White,
M. C. Science 2007, 318, 783. (f) Lafrance, M.; Gorelsky, S. I.; Fagnou,
K. J. Am. Chem. Soc. 2007, 129, 14570. (g) Wasa, M.; Engle, K. M.; Yu,
J.-Q. J. Am. Chem. Soc. 2010, 132, 3680.
high enough to be at least comparable to that of 1a. In fact, in a
previously reported example of cycloisomerization of a 1,7-
diene to form a five-membered ring, isomerized 1,6-diene
intermediates were shown to have higher reactivities than the
original 1,7-diene.7c,e This strongly suggests that the reaction
proceeds via a chain-walking mechanism.
(4) For carbon−carbon bond formation at an allylic position
considered to proceed by chain walking of one carbon−carbon bond,
see: Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 8644.
(5) (a) Chirik, P. J.; Day, M. W.; Labinger, J. A.; Bercaw, J. E. J. Am.
Chem. Soc. 1999, 121, 10308. (b) Fukuyama, T.; Doi, T.; Minamino,
S.; Omura, S.; Ryu, I. Angew. Chem., Int. Ed. 2007, 46, 5559.
(c) Carvajal, M. A.; Kozuch, S.; Shaik, S. Organometallics 2009, 28,
3656. (d) Magro, A. A. N.; Robb, L.-M.; Pogorzelec, P. J.; Slawin, A.
M. Z.; Eastham, G. R.; Cole-Hamilton, D. J. Chem. Sci. 2010, 1, 723.
(6) (a) Yamamoto, Y. Chem. Rev. 2012, 112, 4736. (b) Lloyd-Jones,
G. C. Org. Biomol. Chem. 2003, 1, 215. Recent examples: (c) Nelson,
B.; Hiller, W.; Pollex, A.; Hiersemann, M. Org. Lett. 2011, 13, 4438.
(d) Nelson, B.; Herres-Pawlis, S.; Hiller, W.; Preut, H.; Strohmann, C.;
Hiersemann, M. Org. Lett. 2012, 77, 4980.
(7) (a) Grigg, R.; Malone, J. F.; Mitchell, T. R. B.; Ramasubbu, A.;
Scott, R. M. J. Chem. Soc., Perkin Trans 1 1984, 1745. (b) Behr, A.;
Freudenberg, U.; Keim, W. J. Mol. Catal. 1986, 35, 9. (c) Yamamoto,
Y.; Ohkoshi, N.; Kameda, M.; Itoh, K. J. Org. Chem. 1999, 64, 2178.
(d) Kisanga, P.; Widenhoefer, R. A. J. Am. Chem. Soc. 2000, 122,
10017. (e) Yamamoto, Y.; Nakagai, Y.-i.; Ohkoshi, N.; Itoh, K. J. Am.
Chem. Soc. 2001, 123, 6372. (f) Terada, Y.; Arisawa, M.; Nishida, A.
Angew. Chem., Int. Ed. 2004, 43, 4063. (g) Terada, Y.; Arisawa, M.;
Nishida, A. J. Org. Chem. 2006, 71, 1269. (h) Arisawa, M.; Terada, Y.;
Takahashi, K.; Nakagawa, M.; Nishida, A. J. Org. Chem. 2006, 71, 4255.
(8) (a) Kisanga, P.; Goj, L. A.; Widenhoefer, R. A. J. Org. Chem.
2001, 66, 635. (b) Goj, L. A.; Widenhoefer, R. A. J. Am. Chem. Soc.
2001, 123, 11133.
In summary, we have demonstrated the remarkable potential
of the chain-walking strategy in organic synthesis by enabling
the selective formation of five-membered-ring products from
various 1,n-dienes. We believe that the use of the chain-walking
strategy will offer diverse novel methods in organic synthesis to
construct carbon−carbon bonds that are otherwise difficult to
form. Transition-metal-catalyzed direct functionalization of
unreactive carbon−hydrogen bonds has become a powerful
tool for carbon−carbon bond formation,3 but there are still
limitations in scope, particularly in terms of functionalization of
sp3-hybridized carbon−hydrogen bonds. In addition, the site
selectivity of the functionalization generally relies upon that of
carbon−hydrogen bond cleavage controlled by electronics,
sterics, and/or directing groups. Therefore, the use of chain
walking should provide an alternative approach for the
functionalization of unreactive sp3-hybridized carbon−hydro-
gen bonds. Further investigation of the chain-walking strategy
to develop new types of carbon−carbon bond-forming
reactions is underway.
ASSOCIATED CONTENT
* Supporting Information
■
S
Full experimental details, characterization data, and crystallo-
graphic data (CIF). This material is available free of charge via
(9) See Table S1 in the Supporting Information for details.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported in part by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science and Technology, Japan, and a grant from the Keio
Leading-Edge Laboratory of Science and Technology.
REFERENCES
■
(1) In general, the term “chain walking” may also be used for a
mechanism where both β-hydride elimination/reinsertion and olefin
exchange occur rapidly, but in this paper, we refer to chain walking
only as a mechanism in which olefin exchange is much slower than β-
hydride elimination/reinsertion, considering the mechanism of the
chain-walking polymerization and what the term really represents.
(2) (a) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.
1995, 117, 6414. (b) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am.
Chem. Soc. 1996, 118, 267. (c) Guan, Z.; Cotts, P. M.; McCord, E. F.;
McLain, S. J. Science 1999, 283, 2059. (d) Okada, T.; Park, S.;
Takeuchi, D.; Osakada, K. Angew. Chem., Int. Ed. 2007, 46, 6141.
(e) Okada, T.; Takeuchi, D.; Shishido, A.; Ikeda, T.; Osakada, K. J. Am.
Chem. Soc. 2009, 131, 10852. (f) Takeuchi, D. J. Am. Chem. Soc. 2011,
133, 11106.
(3) For transition-metal-catalyzed direct regioselective functionaliza-
tion of unactivated sp3 carbon−hydrogen bonds, see: (a) Jazzar, R.;
Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.Eur. J.
2010, 16, 2654. (b) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J.
F. Science 2000, 287, 1995. (c) Zaitsev, V. G.; Shabashov, D.; Daugulis,
16547
dx.doi.org/10.1021/ja308377u | J. Am. Chem. Soc. 2012, 134, 16544−16547