LETTER
Photocatalytic Cascade Carbon–Carbon Bond-Forming Radical Reaction
1581
tion’ without depending on the radical-chain processes
such as an iodine-atom transfer. Two acceptable photore-
dox cycles are shown in Scheme 5. This reaction would
proceed via both the photoredox cycles, considering the
redox potentials of i-C3F7I and ruthenium species playing
the role of electron donor and acceptor.
References and Notes
(1) Anastas, P. T.; Warner, J. C. In Green Chemistry Theory and
Practice; Oxford University Press: New York, 1998.
(2) Li, C.-J.; Chan, T.-H. In Comprehensive Organic Reactions
in Aqueous Media; John Wiley and Sons: Hoboken, 2007.
(3) (a) Kobayashi, S. Pure Appl. Chem. 2007, 79, 235. (b) Li,
C.-J. Chem. Rev. 2005, 105, 3095.
A favorable experimental feature of photocatalysis is that
the reactions proceed in aqueous media under mild reac-
tion conditions, providing a C–C bond-forming method.
We are now initiating a program aimed at studying the
real catalytic radical processes in great detail, which are
not depending on the radical-chain processes but on the
redox processes.
(4) Perchyonok, V. T. In Radical Reactions in Aqueous Media;
RSC Green Chemistry No. 6, RSC Publishing: Cambridge,
2010.
(5) Yorimitsu, H.; Shinokubo, H.; Oshima, K. Synlett 2002, 674.
(6) (a) Ueda, M.; Miyabe, H.; Nishimura, A.; Miyata, O.;
Takemoto, Y.; Naito, T. Org. Lett. 2003, 5, 3835. (b) Huang,
T.; Keh, C. C. K.; Li, C. J. Chem. Commun. 2002, 2440.
(7) For some reviews, see: (a) Shi, L.; Xia, W. Chem. Soc. Rev.
2012, 41, 7687. (b) Ischay, M. A.; Yoon, T. P. Eur. J. Org.
Chem. 2012, 3359. (c) Tucker, J. W.; Stephenson, C. R. J. J.
Org. Chem. 2012, 77, 1617. (d) Narayanam, J. M. R.;
Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(8) (a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008,
322, 77. (b) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon,
T. P. J. Am. Chem. Soc. 2008, 130, 12886. (c) Narayanam, J.
M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc.
2009, 131, 8756. (d) Larraufie, M.-H.; Pellet, R.;
Typical Procedure for the Reaction with i-C3F7I
To a suspension of substrate 1, 5, 7, 9, 11, or 13 (1.00 mmol) in
H2O–MeCN (9:1, v/v, 10 mL) or H2O (10 mL) was added
(i-Pr)2NEt (192 μL, 1.10 mmol), then the suspension was degassed
using three pump-thaw cycles under argon atmosphere at 0 °C.
Ru(bpy)3Cl2·6H2O (32 mg, 0.050 mmol) and i-C3F7I (705 μL, 5.00
mmol) were added to the suspending solution at r.t. and irradiated
with white LED lamp (1000 lm). After being stirred for 3 h, the re-
action mixture was concentrated under reduced pressure. Purifica-
tion of the residue by flash silica gel column chromatography
(EtOAc–hexane = 1:10–1:4) afforded the products.
Fensterbank, L.; Goddard, J.-P.; Lacôte, E.; Malacria, M.;
Ollivier, C. Angew. Chem. Int. Ed. 2011, 50, 4463. (e) Lin,
S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc.
2011, 133, 19350. (f) McNally, A.; Prier, C. K.; MacMillan,
D. W. C. Science 2011, 334, 1114. (g) Maity, S.; Zhu, M.;
Shinabery, R. S.; Zheng, N. Angew. Chem. Int. Ed. 2012, 51,
6119. (h) Miyake, Y.; Nakajima, K.; Nishibayashi, Y. J. Am.
Chem. Soc. 2012, 134, 19350.
The Analytical Data of Typical Compounds 14a and 15a
Product 14a
1
A colorless oil. IR (KBr): 2962, 2931, 1723, 1646, 1456 cm–1. H
NMR (400 MHz, CDCl3): δ = 7.45–7.35 (5 H, m), 5.06 (1 H, d, J =
11.0 Hz), 4.94 (1 H, d, J = 11.0 Hz), 3.89 (1 H, d, J = 12.1 Hz), 3.82
(1 H, d, J = 12.1 Hz), 2.78 (1 H, t, J = 16.0 Hz), 2.56 (1 H, t, J = 16.0
Hz), 1.73 (3 H, s), 1.52 (3 H, s), 1.40 (3 H, s). 13C NMR (100 MHz,
CDCl3): δ = 171.4, 135.0, 130.2, 129.4, 128.8, 128.5, 122.7, 120.8
(qd, J = 290, 28 Hz), 120.6 (qd, J = 290, 28 Hz), 91.1 (dsep, J = 209,
33 Hz), 76.7, 49.8 (d, J = 3 Hz), 43.8 (d, J = 4 Hz), 33.5 (d, J = 18
Hz), 26.9, 21.2, 20.7. 19F NMR (376 MHz, CDCl3): δ = –77.6 (3 F,
m), –77.9 (3 F, m), –189.5 (1 F, m). HRMS (ESI+): m/z calcd for
C19H21F7NO2Na [M + Na+]: 450.1274; found: 450.1304.
(9) For photocatalysis of halogen compounds, see: (a) Tucker, J.
W.; Nguyen, J. D.; Narayanam, J. M. R.; Krabbe, S. W.;
Stephenson, C. R. J. Chem. Commun. 2010, 46, 4985.
(b) Shih, H.-W.; Wal, M. N. V.; Grange, R. L.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2010, 132, 13600. (c) Nguyen,
J. D.; D’Amato, E. M.; Narayanam, J. M. R.; Stephenson, C.
R. J. Nat. Chem. 2012, 4, 854. (d) Andrews, R. S.; Becker, J.
J.; Gagné, M. R. Angew. Chem. Int. Ed. 2012, 51, 4140.
(e) Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C.
R. J. Org. Lett. 2012, 14, 94.
(10) For the photocatalysis using perfluoroalkyl iodides, see:
(a) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2009, 131, 10875. (b) Pham, P. V.; Nagib, D. A.;
MacMillan, D. W. C. Angew. Chem. Int. Ed. 2011, 50, 6119.
(c) Nagib, D. A.; MacMillan, D. W. C. Nature (London)
2011, 480, 224.
(11) For the photocatalysis in aqueous media, see: (a) Nguyen, J.
D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R.
J. J. Am. Chem. Soc. 2011, 133, 4160. (b) Rueping, M.; Zhu,
S.; Koenigs, R. M. Chem. Commun. 2011, 47, 8679.
(c) Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C.
R. J. Angew. Chem. Int. Ed. 2012, 51, 4144. (d) Zen, J. M.;
Liou, S. L.; Kumar, A. S.; Hsia, M. S. Angew. Chem. Int. Ed.
2003, 42, 577.
Product 15a
1
A colorless oil. IR (KBr): 2932, 2869, 1725, 1688, 1456 cm–1. H
NMR (400 MHz, CDCl3): δ = 7.45–7.36 (5 H, m), 5.04 (1 H, d, J =
11.2 Hz), 4.96 (1 H, br s), 4.95 (1 H, d, J = 11.2 Hz), 4.69 (1 H, br
s), 3.33–3.25 (2 H, m), 3.08 (1 H, t, J = 7.8 Hz), 2.57 (1 H, dd, J =
28.9, 16.4 Hz), 2.26 (1 H, dd, J = 16.4, 10.1 Hz), 1.74 (3 H, s), 1.02
(3 H, s). 13C NMR (100 MHz, CDCl3): δ = 172.3, 140.5, 135.2,
129.4, 128.9, 128.6, 120.7 (qd, J = 288, 28 Hz), 120.6 (qd, J = 288,
29 Hz), 114.7, 91.9 (dsep, J = 209, 32 Hz), 76.9, 47.7, 43.8, 41.5 (d,
J = 5 Hz), 33.0 (d, J = 18 Hz), 23.1 (d, J = 3 Hz), 20.6. 19F NMR
(376 MHz, CDCl3): δ = –75.9 (3 F, br quin, J = 10 Hz), –78.1 (3 F,
m), –185.1 (1 F, m). HRMS (ESI+): m/z calcd for C19H20F7NO2Na
[M + Na+]: 450.1274; found: 450.1268.
(12) (a) Balzani, V.; Bolletta, F.; Gandolfi, M. T.; Maestri, M.
Top. Curr. Chem. 1978, 75, 1. (b) Campagna, S.; Puntoriero,
F.; Nastasi, F.; Bergamini, G.; Balzani, V. Top. Curr. Chem.
2007, 280, 117. (c) Bock, C. R.; Meyer, T. J.; Whitten, D. G.
J. Am. Chem. Soc. 1975, 97, 2909. (d) Bock, C. R.; Connor,
J. A.; Gutierrez, A. R.; Meyer, T. J.; Whitten, D. G.;
Sullivan, B. P.; Nagle, J. K. J. Am. Chem. Soc. 1979, 101,
4815. (e) Lin, C.-T.; Böttcher, W.; Chou, M.; Creutz, C.;
Sutin, N. J. Am. Chem. Soc. 1976, 98, 6536.
Acknowledgment
This work was supported in part by Grant-in-Aid for Scientific Re-
search (C) (H.M.) and for Young Scientists (B) (E.Y.) from the Mi-
nistry of Education, Culture, Sports, Science and Technology of
Japan.
Supporting Information for this article is available online at
(13) Yoshioka, E.; Kohtani, S.; Sawai, K.; Kentefu; Tanaka, E.;
Miyabe, H. J. Org. Chem. 2012, 77, 8588.
m
iotSrat
ungIifoop
r
t
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 1578–1582