Full Paper
Biological Assays
Keywords: Synthetic methods · Cycloaddition ·
Regioselectivity · Redox chemistry · Biological activity ·
Quinones
Inhibitors: The chloroquine diphosphate salt and Methylene Blue
trihydrate were purchased from Sigma–Aldrich. The lead plasmodi-
one was prepared as described previously (as benzylMD 1c in
ref.[17]). Stock solutions of Methylene Blue and chloroquine were
prepared in pure water. Stock solutions of the benzylMD derivatives
[1] a) T. J. Schmidt, S. A. Khalid, A. J. Romanha, T. M. Alves, M. W. Biavatti, R.
Brun, F. B. Da Costa, S. L. de Castro, V. F. Ferreira, M. V. de Lacerda, J. H.
Lago, L. L. Leon, N. P. Lopes, R. C. das Neves Amorim, M. Niehues, I. V.
Ogungbe, A. M. Pohlit, M. T. Scotti, W. N. Setzer, M. de N. C. Soeiro, M.
Steindel, A. G. Tempone, Curr. Med. Chem. 2012, 19, 2176–2228; b) H.
Eilenberg, S. Pnini-Cohen, Y. Rahamim, E. Sionov, E. Segal, S. Carmeli, A.
Zilberstein, J. Exp. Bot. 2010, 61, 911–922; c) C. M. Holsclaw, K. M. Sogi,
S. A. Gilmore, M. W. Schelle, M. D. Leavell, C. R. Bertozzi, J. A. Leary, ACS
Chem. Biol. 2008, 3, 619–624.
[2] a) A. Fournet, A. Angelo, V. Muñoz, F. Roblot, R. Hocquemiller, A. Cavé, J.
Ethnopharmacol. 1992, 37, 159–164; b) V. P. Papageorgiou, A. N. Assimo-
poulou, E. A. Couladouros, D. Hepworth, K. C. Nicolaou, Angew. Chem.
Int. Ed. 1999, 38, 270–301; Angew. Chem. 1999, 111, 280.
(6 mM) were prepared in DMSO and stored in aliquots at –20 °C.
Growth Inhibition Assays: P. falciparum wild-type strain Dd2 was
cultured at 37 °C according to standard protocols[49] in RPMI me-
dium containing 9 % human serum and type A erythrocytes at a
hematocrit level of 3.3 % under a low-oxygen atmosphere (3 % CO2,
5 % O2, 92 % N2, and 95 % humidity). The cultures were synchro-
nized by using the sorbitol method.[50] Growth inhibition was deter-
mined in a SYBR green assay as described previously.[51,52] Inhibitors
were added to synchronized ring stage parasite cultures in micro-
titer plates (0.5 % parasitemia, 1.25 % hematocrit) and incubated for
72 h. The final inhibitor concentrations in each assay ranged from
[3] S. Padhye, P. Dandawate, M. Yusufi, A. Ahmad, F. H. Sarkar, Med. Res. Rev.
2012, 32, 1131–1158.
22 pM to 5 μM.
In Vitro Anti-Plasmodium Activity Assays: The inhibition of intra-
erythrocytic parasite development by benzylMD derivatives and
control agents (CQ, MB) was determined in microtiter tests accord-
ing to standard protocols. The in vitro antimalarial activity is ex-
pressed as 50 % inhibitory concentration (IC50). The activities of the
lead plasmodione, Methylene Blue, and chloroquine against the
P. falciparum Dd2 strain (as presented in Table 3) were determined
by using the SYBR® green I assay as described before.[51,52] Briefly,
synchronous ring stage parasites were incubated for 72 h in the
presence of decreasing drug concentrations in microtiter plates
(0.5 % parasitemia, 1.5 % hematocrit final). Each inhibitor was ana-
lyzed in three-fold serial dilution in duplicates and with at least
three independent repetitions.
[4] a) E. A. Hillard, F. Caxico de Abreu, D. C. Melo Ferreira, G. Jaouen, M.
Oliveira Fonseca Goulart, C. Amatore, Chem. Commun. 2008, 2612–2628;
b) M. Elhabiri, P. Sidorov, E. Cesar-Rodo, G. Marcou, D. A. Lanfranchi, E.
Davioud-Charvet, D. Horvath, A. Varnek, Chem. Eur. J. 2015, 21, 3415–
3424; c) K. W. Wellington, RSC Adv. 2015, 5, 20309–20338.
[5] a) A. Mahapatra, S. P. Mativandlela, B. Binneman, P. B. Fourie, C. J. Hamil-
ton, J. J. Meyer, F. van der Kooy, P. Houghton, N. Lall, Bioorg. Med. Chem.
2007, 15, 7638–7646; b) J.-S. Yu, Synlett 2014, 25, 2377–2378.
[6] a) M. J. Shearer, P. Newman, J. Lipid Res. 2014, 55, 345–362.
[7] a) L. Salmon-Chemin, A. Lemaire, S. De Freitas, B. Deprez, C. Sergheraert,
E. Davioud-Charvet, Bioorg. Med. Chem. Lett. 2000, 10, 631–635; b) L.
Salmon-Chemin, E. Buisine, V. Yardley, S. Kohler, M.-A. Debreu, V. Landry,
C. Sergheraert, S. L. Croft, R. L. Krauth-Siegel, E. Davioud-Charvet, J. Med.
Chem. 2001, 44, 548–565.
[8] G. Saxena, S. W. Farmer, R. E. Hancock, G. H. Towers, J. Nat. Prod. 1996,
59, 62–65.
[9] a) R. B. Gupta, R. N. Khanna, N. N. Sharma, Indian J. Chem., Sect. B 1977,
15, 394–395; b) R. B. Gupta, R. N. Khanna, V. P. Manchanda, Indian J.
Chem., Sect. B 1979, 18, 217–218.
Supporting Information (see footnote on the first page of this
article): General Procedures 4–7, 11, and 12; detailed descriptions
of experimental procedures, spectroscopic data, and 1H and 13C
NMR spectra of all new compounds.
[10] Y. Gu, P. K. Li, Y. C. Lin, Y. Rikihisa, R. W. Brueggemeier, J. Steroid Biochem.
Mol. Biol. 1991, 38, 709–715.
Acknowledgments
[11] M. E. Rateb, W. E. Houssen, M. Arnold, M. H. Abdelrahman, H. Deng, W. T.
Harrison, C. K. Okoro, J. A. Asenjo, B. A. Andrews, G. Ferguson, A. T. Bull,
M. Goodfellow, R. Ebel, M. Jaspars, J. Nat. Prod. 2011, 74, 1491–1499.
[12] C. C. Nawrat, C. J. Moody, Angew. Chem. Int. Ed. 2014, 53, 2056–2077;
Angew. Chem. 2014, 126, 2086.
[13] a) L. Boisvert, P. Brassard, J. Org. Chem. 1988, 53, 4052–4059; b) M. Miya-
shita, T. Yamasaki, T. Shiratani, S. Hatakeyama, M. Miyazawaa, H. Irie,
Chem. Commun. 1997, 1787–1788.
[14] a) J. Tou, W. Reusch, J. Org. Chem. 1980, 45, 5012–5014; b) R. L. Nunes,
L. W. Bieber, Tetrahedron Lett. 2001, 42, 219–221.
[15] a) Y.-F. Ji, Z.-M. Zong, X.-Y. Wei, G.-Z. Tu, L. Xu, L.-T. He, Synth. Commun.
2003, 33, 763–772; b) J. N. Payette, H. Yamamoto, J. Am. Chem. Soc. 2007,
129, 9536–9537.
[16] a) J. G. Bauman, R. Hawley, H. Rapoport, J. Org. Chem. 1985, 50, 1573–
1577; b) B. Kesteleyn, N. De Kimpe, J. Org. Chem. 2000, 65, 640–644.
[17] T. Müller, L. Johann, B. Jannack, M. Bruckner, D. A. Lanfranchi, H. Bauer,
C. Sanchez, V. Yardley, C. Deregnaucourt, J. Schrevel, M. Lanzer, R. H.
Schirmer, E. Davioud-Charvet, J. Am. Chem. Soc. 2011, 133, 11557–11571.
[18] K. Ehrhardt, E. Davioud-Charvet, H. Ke, A. Vaidya, M. Lanzer, M. Deponte,
Antimicrob. Agents Chemother. 2013, 57, 2114–2120.
[19] M. Bielitza, D. Belorgey, K. Ehrhardt, L. Johann, D. A. Lanfranchi, V. Gallo,
E. Schwarzer, F. Mohring, E. Jortzik, D. L. Williams, K. Becker, P. Arese, M.
Elhabiri, E. Davioud-Charvet, Antioxid. Redox Signaling 2015, 22, 1337–
1351.
E. D.-C. thanks Don Antoine Lanfranchi, in recognition of his
fundamental contribution to the development of the platform
of organic chemistry of the described 2-methyl-1,4-naphtho-
quinones. The authors wish to thank the National Institutes of
Health (NIH), USA (project entitled “Redox balance and drug
development in Schistosoma mansoni”, grant 1R01AI065622-
01A2 to D. L. W.) for creating an effective framework to allow
the set-up of the platform of synthetic methodologies (salary
to D. A. L.). This work was also made possible by grants of
the Agence Nationale de la Recherche (ANR) (ANRemergence2010
program, grant SCHISMAL to E.D.-C.), and of the Laboratoire
d'Excellence ParaFrap (grant LabEx ParaFrap ANR-11-LABX-0024
to E. D.-C.). The French Centre National de la Recherche Scientif-
ique (CNRS) (grant UMR 7509 to E. D.-C.), the University of Stras-
bourg, France, and the International Center for Frontier Re-
search in Chemistry, Strasbourg, France (project entitled
“Redox-active 1,4-naphthoquinones to kill malarial parasites”,
grant ic-FRC-Trinational to E.D.-C.) partly supported this work.
K. E. is grateful to the CNRS and to Alain van Dorsselaer for
her co-funded CNRS doctoral fellowship (BDI). The authors are
indebted to Michel Schmitt for recording a part of the NMR
spectra.
[20] D. A. Lanfranchi, E. Cesar-Rodo, B. Bertrand, H.-H. Huang, L. Day, L. Jo-
hann, M. Elhabiri, K. Becker, D. L. Williams, E. Davioud-Charvet, Org.
Biomol. Chem. 2012, 10, 6375–6387.
[21] J. M. Anderson, J. K. Kochi, J. Am. Chem. Soc. 1970, 92, 1651–1659.
Eur. J. Org. Chem. 2016, 1982–1993
1992
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim