390
S. Okamoto et al. / Tetrahedron Letters 51 (2010) 387–390
(h) Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev. 2000, 100, 2835; (i) Kulinkovich,
Table 3
Reactions of aldimines 2a
O. G.; de Meijere, A. Chem. Rev. 2000, 100, 2789; (j) Eisch, J. J. J. Organomet.
Chem. 2001, 617–618, 148; (k) Sato, F.; Okamoto, S. Adv. Synth. Catal. 2001, 343,
759; (l) Sato, F.; Urabe, H. In Titanium and Zirconium in Organic Synthesis; Marek,
I., Ed.; Wiley-VCH: Weinheim, Germany, 2002; pp 319–354.
2. Rele, A. M.; Nayak, S. K.; Chattopadhyay, S. Tetrahedron 2008, 64, 7225. and
references cited therein.
3. Ohkubo, M.; Mochizuki, S.; Sano, T.; Kawaguchi, Y.; Okamoto, S. Org. Lett. 2007,
9, 773.
4. For pinacol coupling, see: Lipski, T. A.; Hilfiker, M. A.; Nelson, S. G. J. Org. Chem.
1997, 62, 4566. and references cited therein.
5. Review for imino pinacol coupling: Lucet, D.; Le Gall, T.; Mioskowski, C. Angew.
Chem., Int. Ed. 1998, 37, 2580.
Run
Substrate 2
Product 6
Isolated yield, %
R
R’
dl:mesob
6. Periasamy, M.; Srinivas, G.; Karunakar, G. V.; Bharathi, P. Tetrahedron Lett. 1999,
40, 7577.
7. Cooke, A. W.; Wagener, K. B. Macromolecules 1991, 24, 1404.
8. Demir, A. S.; Reis, Ö. Tetrahedron 2004, 60, 3803.
9. Anuragudom, P.; Newaz, S. S.; Phanichphant, S.; Lee, T. R. Macromolecules 2006,
39, 3494.
10. Jiu, T.; Li, Y.; Liu, X.; Liu, H.; Li, C.; Ye, J.; Zhu, D. J. Polym. Sci., Part A: Polym.
Chem. 2007, 45, 911.
11. Liu, Q.; Liu, W.; Yao, B.; Tian, H.; Xie, Z.; Geng, Y.; Wang, F. Macromolecules
2007, 40, 1851.
12. Faugeroux, V.; Génisson, Y.; Salma, Y.; Constant, P.; Baltas, M. Bioorg. Med.
Chem. 2007, 15, 5866. and references cited therein.
1
2
3
4
5
6
7
8
9
n-Bu
i-Bu
i-Pr
cycl-Hex
t-Bu
Ph
Ph
2-Furyl
2-Thienyl
PhCH2
PhCH2
PhCH2
PhCH2
PhCH2
PhCH2
Ph
88:12
88:12
91:9
>99:1
No reaction
92:8
76:23
61:39
82:18
18
23
32
15
74
66
53
40
PhCH2
PhCH2
a
Compound 2 (1.0 mmol), Ti(O-i-Pr)4 (1.0 mmol), Me3SiCl (2.0 mmol), and Mg
13. General procedure for carbonyl coupling with Ti(O-i-Pr)4/Me3SiCl/Mg/Et3N
powder (4.0 mmol) in THF (10 mL).
Determined by 1H NMR analysis of the crude mixture.
b
reagent: To
a mixture of aldehyde 1 (1.00 mmol), Ti(O-i-Pr)4 (0.386 mL,
1.30 mmol), Et3N (0.360 mL, 2.60 mmol), and Mg powder (49 mg, 2.0 mmol)
in THF (5 mL) was added Me3SiCl (0.165 mL, 1.30 mmol) at 40 °C. The mixture
was stirred for 24–72 h at this temperature and then quenched by the addition
of aqueous 1 M HCl. The resulting mixture was extracted with AcOEt. The
combined organic layers were dried over MgSO4, filtrated through a pad of
Celite, and concentrated. The residue was purified by column chromatography
on silica gel (hexane/AcOEt) to give 1,2-diarylethylene 3. Procedure for
tion conditions with simple operation,13 where the addition of
Et3N was effective in minimizing the formation of the correspond-
ing 1,2-diols. The reagent also coupled aldimines to 1,2-diamines.
Further investigation for improving efficiency of the methods, con-
firming a role of an additive (Et3N), and their synthetic application
is underway in our laboratory.
polymerization with Ti(O-i-Pr)4/Me3SiCl/Mg/Et3N reagent: To
a mixture of
dialdehyde 1j or 1k (0.50 mmol), Ti(O-i-Pr)4 (0.385 mL, 1.30 mmol), Et3N
(0.36 mL, 2.60 mmol), and Mg powder (49 mg, 2.0 mmol) in THF (5.0 mL) was
added Me3SiCl (0.165 mL, 1.30 mmol) at 50 °C. The mixture was stirred for 24–
96 h at this temperature and then quenched by the addition of aqueous 1 M
HCl. The resulting mixture was extracted with CHCl3. The combined organic
layers were washed with water, concentrated, and dried in vacuo. The residue
was twice reprecipitated from chloroform/methanol or THF/methanol and
then dried in vacuo to give 2j or 2k. General procedure for imino-pinacol coupling
with Ti(O-i-Pr)4/Me3SiCl/Mg reagent: To a mixture of imine 2 (1.00 mmol), Ti(O-
i-Pr)4 (0.297 mL, 1.00 mmol), and Mg powder (98 mg, 4.0 mmol) in THF
(10 mL) was added Me3SiCl (0.254 mL, 2.00 mmol) at room temperature. The
mixture was stirred for 20–24 h at this temperature and then quenched by the
addition of aqueous 1 M NaOH (ꢂ0.5 mL). After addition of NaF (ꢂ1 g) and
Celite (ꢂ1 g), the resulting mixture was stirred for 1 h and then filtrated
through a pad of Celite. The filtrate was concentrated to dryness and the
residue was purified by column chromatography on silica gel (hexane/AcOEt)
to give 1,2-diarylethylene-1,2-diamine 6.
Acknowledgment
We thank the Ministry of Education, Culture, Sports, Science,
and Technology (Japan) for financial support.
References and notes
1. (a) McMurry, J. E.; Fleming, M. P. J. Am. Chem. Soc. 1974, 96, 4708; (b)
Mukaiyama, T.; Sato, T.; Hanna, J. Chem. Lett. 1973, 1041; (c) McMurry, J. E.
Chem. Rev. 1989, 89, 1513; (d) Lenoir, D. Synthesis 1989, 883; (e) Kahn, B. E.;
Rieke, R. D. Chem. Rev. 1988, 88, 733; (f) Fürstner, A.; Bogdanovic, B. Angew.
Chem., Int. Ed. 1996, 35, 2442; (g) Ephritikhine, M. Chem. Commun. 1998, 2549;