9434
S.V. Shishkina et al. / Tetrahedron 68 (2012) 9429e9434
(br m, 4H, CH2), 0.99 (br m, 12H, CH3). Anal. Found %: C, 76.82; H,
6.00. Anal. Calcd for C96H88O16 %: C, 77.00; H, 5.88.
was assumed for the dielectric constant. For optimization of the
arrangement of the benzoyl groups the dihedral driver procedure
was applied in which two torsions for the AreOBz and ArOeBz
bonds were changed with the step of 30ꢀ. From the 144 con-
formers, the lowest energy one was minimized with no con-
straints and taken, in turn, as the starting point for the following
rotations of remaining benzoyl groups. B3LYP calculations19 were
carried out using the PCGAMES/Firefly program20 with cc-pVDZ
basis set.21
4.3. X-ray data collection and crystal structure
determinations
X-ray diffraction data were collected on the «Xcalibur-3» dif-
fractometer (graphite monochromated MoK
a radiation, CCD de-
tector,
u
-scans, 2Qmax¼50ꢀ) at 173 K. The structures were solved by
direct methods using the SHELXTL18 package. Positions of hydrogen
atoms were calculated geometrically and refined by riding them on
the carrier atom with Uiso¼nUeq (n¼1.5 for methyl and hydroxyl
groups and n¼1.2 for other hydrogen atoms). The hydrogen atoms
of hydroxyl groups and water molecules in the structure
2a$2Et3NHCl$2MeCN$2H2O were refined in isotropic approxima-
tion. The crystallographic data and experimental parameters are
listed in Table 1. Final atomic coordinates, geometrical parameters,
and crystallographic data have been deposited with the Cambridge
Crystallographic Data Centre, 11 Union Road, Cambridge CB2 1EZ,
deposition numbers are given in Table 1.
References and notes
1. (a) Timmerman, P.; Verboom, W.; Reinhoudt, D. N. Tetrahedron 1996, 52,
2663e2704; (b) Jain, V. K.; Kanaiya, P. H. Russ. Chem. Rev. 2011, 80, 75e102.
2. (a) Cram, D. J.; Cram, J. M. Container Molecules and Their Guests. In Monographs
in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry:
Cambridge, UK, 1994; (b) Chapman, R. G.; Sherman, J. C. Tetrahedron 1997, 53,
15911e15945; (c) Rudkevich, D. M. Bull. Chem. Soc. Jpn. 2002, 75, 393e413; (d)
Atwood, J. L.; Szumna, A. Chem. Commun. 2003, 940e941.
3. (a) Mac Gillivray, L. R.; Atwood, J. L. Nature 1997, 389, 469e472; (b) Murayama,
K.; Aoki, K. Chem. Commun. 1998, 607e608; (c) Shivanyuk, A.; Rissanen, K.;
Kolehmainen, E. Chem. Commun. 2000, 1107e1108; (d) Gerkensmeier, T.; Iwa-
nek, W.; Agena, C.; Frolich, R.; Kotila, S.; Nather, C.; Mattay, J. Eur. J. Org. Chem.
1999, 2257e2262; (e) Kuberski, B.; Szumna, A. Chem. Commun. 2009,
€
1959e1961; (f) Schroder, T.; Sahu, S. N.; Anselmetti, D.; Mattay, J. Isr. J. Chem.
2011, 51, 725e727; (g) Shivanyuk, A. J. Am. Chem. Soc. 2007, 129, 14196e14199.
4. (a) Negin, S.; Daschbach, M. M.; Kulikov, O. V.; Rath, N.; Gokel, G. W. J. Am.
Chem. Soc. 2011, 133, 3234e3237; (b) Heaven, M. W.; Cave, G. W. V.; McKinlay,
R. M.; Antesberger, J.; Dalgarno, S. J.; Thallapally, P. K.; Atwood, J. L. Angew.
Chem., Int. Ed. 2006, 45, 6221e6224.
Table 1
X-ray crystallographic data
2a$5MeCN
2a$5Et3NHCl$2 4$5MeCN
MeCN$2H2O
2b$2Et3NHCl$
MeCN
5. Tunstad, L. M.; Tucker, J. A.; Dalcanale, E.; Weiser, J.; Bryant, J. A.; Sherman, J. C.;
Helgeson, R. C.; Knobler, C. B.; Cram, D. J. J. Org. Chem. 1989, 54, 1305e1312.
ꢀ
a, A
19.495(4)
29.830(4)
24.615(4)
90
103.24(2)
90
13,934(4)
5196
Monoclinic Monoclinic
P21/c
4
100
0.080
1.173
50
15.359(3)
30.396(6)
16.977(3)
90
9.8208(3)
35.423(1)
25.0371(9) 26.594(1)
22.362(1)
26.420(2)
€
6. Shivanyuk, A.; Paulus, E. F.; Bohmer, V.; Vogt, W. J. Org. Chem. 1998, 63,
ꢀ
b, A
6448e6449.
ꢀ
c, A
7. (a) Lukin, O. V.; Pirozhenko, V. V.; Shivanyuk, A. N. Tetrahedron Lett. 1995, 36,
7725e7728; (b) Lukin, O.; Shivanyuk, A.; Pirozhenko, V. V.; Tsymbal, I. F.;
Kal’chenko, V. I. J. Org. Chem. 1998, 63, 9510e9516.
8. Shivanyuk, A. Chem. Commun. 2001, 1472e1473.
ꢀ
ꢀ
ꢀ
a
,
90
90
92.191(5)
90
15,700(2)
5936
b
,
92.27(1)
90
91.475(3)
90
g
,
€
3
9. (a) Shivanyuk, A.; Paulus, E. F.; Bohmer, V. Angew. Chem., Int. Ed. 1999, 38,
ꢀ
V, A
7920(2)
3096
8707.2(5)
3488
2906e2909; (b) Shivanyuk, A. Tetrahedron 2005, 61, 349e352.
10. (a) Eisler, D. J.; Puddephatt, R. J. Inorg. Chem. 2003, 42, 6352e6365; (b) Eisler, D.
J.; Kirby, C. W.; Puddephatt, R. J. Inorg. Chem. 2003, 42, 7626e7634; (d) Eisler, D.
J.; Puddephatt, R. J. Inorg. Chem. 2003, 42, 8192e8202.
F(000)
Crystal system
Space group
Z
Monoclinic Monoclinic
P21/n
4
P21/c
4
C2/c
8
100
0.143
1.176
50
€
11. (a) Shivanyuk, A.; Schmidt, C.; Bohmer, V.; Paulus, E. F.; Lukin, O. V.; Vogt, W. J.
T, K
100
100
Am. Chem. Soc. 1998, 120, 4319e4326; (b) Shivanyuk, A.; Rafai Far, A.; Rebek, J.,
Jr. Org. Lett. 2002, 4, 1555e1558; (c) Arnott, G.; Page, P. C.; Heaney, H.; Hunter,
R.; Sampler, E. P. Synlett 2001, 412e414.
m
, mmꢁ1
0.147
1.217
50
0.085
1.262
60
Dcalcd, g/cm3
Qmax, grad
Measured
reflections
2
€
12. Shivanyuk, A.; Paulus, E. F.; Rissanen, K.; Kolehmainen, E.; Bohmer, V. Chem.
41,824
20,623
90,464
54,590
dEur. J. 2001, 7, 1944e1951.
13. James, M. A.; Cameron, T. S.; Knop, O.; Neuman, M.; Falk, M. Can. J. Chem. 1985,
63, 1750e1758.
Independent
reflections
Rint
Reflections
with F>4s(F)
22,159
12,696
25,254
13,643
14. Serena Software, Dr. Kevin E. Gilbert, P.O. 3076, Bloomington, IN 47402.
15. See for example: Winstanley, K. J.; Sayer, A. M.; Smith, D. K. Org. Biomol. Chem.
2006, 4, 1760e1767.
0.133
3730
0.057
6235
0.067
14,494
0.071
9113
16. Abis, L.; Dalcanale, E.; Du Vosel, A.; Spera, S. J. J. Org. Chem. 1988, 53,
5475e5479.
Parameters
1663
981
1144
941
17. For example methyl protons of Et3NHþ encapsulated in hexameric resorcinar-
ene capsules emerge at ꢁ0.08 ppm: (a) Palmer, L.; Shivanyuk, A.; Yamanaka, M.;
Rebek, J., Jr. Chem. Commun. 2005, 857e858.
R1
wR2
S
0.047
0.063
0.534
876625
0.052
0.123
0.813
876624
0.069
0.173
1.027
876627
0.081
0.206
1.026
876626
18. Sheldrick, G. M. SHELXTL PLUS. PC Version A system of computer programs for
the determination of crystal structure from X-ray diffraction data; V. 5.1. 1998,
1998.
CCDC number
19. (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864eB871; (b) Kohn, W.;
Sham, L. J. Phys. Rev. 1965, 140, A1133eA1138; (c) Miehlich, B.; Savin, A.; Stoll,
H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200e206.
4.4. Calculations
Molecular mechanics calculations were performed using the
MMX force field as implemented in PCMODEL 7.5. Energy mini-
mization was accomplished with a conjugate gradient procedure.
A root-mean-square (rms) gradient of 0.01 kcal/mol or less was
assumed as a condition of energy convergence. A value of 1.5 D
21. (a) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007e1024; (b) Woon, D. E.;
Dunning, T. H., Jr. J. Chem. Phys. 1994, 100, 2975e2989; (c) Kendall, R. A.;
Dunning, T. H., Jr..; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796e6807; (d) Woon,
D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358e1372; (e) Wilson, A. K.;
Woon, D. E.; Peterson, K. A.; Dunning, T. H., Jr. J. Chem. Phys. 1999, 110,
7667e7677.