PAL ET AL.
9 of 9
[3] (a)C. W. Lim, I. S. Lee, Nano Today 2010, 5, 412. (b)M. Butters, D.
Catterick, A. Craig, A. Curzons, D. Dale, A. Gillmore, S. P. Green,
I. Marziano, J.‐P. Sherlock, W. White, Chem. Rev. 2006, 106, 3002.
for easy and quantitative separation of the catalyst for
reuse. Further applicability of this catalyst for C–C and
C–heteroatom oxidative coupling reactions is under
investigation in our laboratory.
[4] (a)V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.‐
M. Basset, Chem. Rev. 2011, 111, 3036. (b)S. Rostamnia, B.
Gholipour, X. Liu, Y. Wang, H. Arandiyan, J. Colloid Interface
Sci. 2018, 511, 447. (c)S. Rostamnia, B. Zeynizadeh, E.
Doustkhah, A. Baghban, K. O. Aghbash, Catal. Commun. 2015,
68, 77. (d)S. Rostamnia, K. Lamei, F. Pourhassan, RSC Adv.
2014, 4, 59626. (e)E. Doustkhah, M. Heidarizadeh, S. Rostamnia,
A. Hassankhani, B. Kazemi, X. Liu, Mater. Lett. 2018, 216, 139.
4 | GENERAL PROCEDURE FOR
OXIDATIVE COUPLING BETWEEN
AMIDES AND OLEFINS
A 15 ml screw‐cap tube was charged with a mixture of
amide (0.826 mmol), olefin (2.478 mmol), 70% aqueous
solution of TBHP (1.156 mmol), PTSA (1.652 mmol) and
Fe3O4‐Pd nanocatalyst (30 mg, 2.3 wt% Pd, 5.5 mol%
Pd), and stirred in toluene at room temperature under
ambient air. The progress of the reaction was monitored
by TLC; upon completion, dichloromethane was added
to the reaction mixture. The nanocatalyst was separated
using an external magnet. The organic layer was washed
repeatedly with water, dried over Na2SO4 and
concentrated using a rotary vacuum evaporator. The
crude product was then purified by silica gel column
chromatography (eluent: ethyl acetate–petroleum ether)
to afford the corresponding enamides.
[5] (a)T. Courant, G. Dagousset, G. Masson, Synthesis 2015, 47,
1799. (b)P. V. Santhini, G. Nimisha, J. John, E. Suresh, R. L.
Verma, K. V. Radhakrishnan, Chem. Commun. 2017, 53,
1848. (c)J. K. Laha, M. K. Hunjan, R. A. Bhimpuria, D.
Kathuria, P. V. Bharatam, J. Org. Chem. 2017, 82, 7346. (d)M.
Kamiya, M. Sonoda, S. Tanimori, Tetrahedron 2017, 73, 1247.
[6] J. M. Lee, D. S. Ahn, D. Y. Jung, J. Lee, Y. Do, S. K. Kim, S. K.
Chang, J. Am. Chem. Soc. 2006, 128, 12954. and references therein
[7] K. Kuramochi, H. Watanabe, T. Kitahara, Synlett 2000, 397.
[8] D. J. Ager, Synthesis 1984, 1984, 384.
[9] D. J. Ager, Org. React. 1990, 38, 1.
[10] S. S. Kinderman, J. H. van Maarseveen, H. E. Schoemaker, H.
Hiemstra, F. P. Rutjes, Org. Lett. 2001, 3, 2045.
[11] W. N. Speckamp, M. J. Moolenaar, Tetrahedron 2000, 56, 3817.
[12] R. K. Boeckman Jr., S. W. Goldstein, M. A. Walters, J. Am.
Chem. Soc. 1988, 110, 8250.
ACKNOWLEDGMENTS
[13] T. Hosokawa, M. Takano, Y. Kuroki, S. I. Murahashi, Tetrahe-
dron Lett. 1992, 33, 6643.
We are grateful for financial support from Science and
Engineering Research Board (file no. YSS/2014/001017),
Government of India and UGC, New Delhi (F.30‐378/
2017(BSR)).
[14] X. Liu, K. K. Hii, Eur. J. Org. Chem. 2010, 2010, 5181.
[15] N. Panda, A. K. Jena, M. Raghavender, ACS Catal. 2012, 2, 539.
[16] R. Cano, D. J. Ramon, M. Yus, Tetrahedron 2011, 67, 5432.
[17] M. B. Gawande, V. D. B. Bonifacio, R. S. Verma, I. D. Nogueira,
N. Bundaleski, C. A. A. Ghumman, O. M. N. D. Teodoro, P. S.
Branco, Green Chem. 2013, 1226.
CONFLICT OF INTEREST
[18] N. Panda, S. A. Yadav, S. Giri, Adv. Synth. Catal. 2017, 359, 654.
The authors declare no conflict of interest.
[19] AAS analysis showed that at 32% conversion, 168 ppm Pd was
present in solution; after 72% conversion, 20 ppm Pd was present.
ORCID
[20] (a)D. B. Eremin, V. P. Ananikov, Coord. Chem. Rev. 2017, 346,
2. (b)M. Genelot, V. Dufaud, L. Djakovitch, Adv. Synth. Catal.
2013, 355, 2604.
REFERENCES
SUPPORTING INFORMATION
[1] (a)C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem.
Rev. 2015, 115, 12138. (b)H. Alamgholiloo, S. Rostamnia, A.
Hassankhani, J. Khalafy, M. M. Baradarani, G. Mahmoudi, X.
Liu, Appl. Organometal. Chem. 2018, 32, e4539. (c)E.
Doustkhah, S. Rostamnia, M. Imura, Y. Ide, S. Mohammadi,
C. J. T. Hyland, J. You, N. Tsunoji, B. Zeyniz, Y. Yamauchi,
RSC Adv. 2017, 7, 56306. dS. Rostamnia, S. Kholdi, J. Phys.
Chem. Solids 2017, 111, 47. eE. Doustkhah, S. Rostamnia, H.
G. Hossieni, R. Luque, Chem. Select. 2017, 2, 329.
Additional supporting information may be found online
in the Supporting Information section at the end of the
article.
How to cite this article: Pal CK, Sahu S, Sahu
RK, Singh RK, Jena AK. Magnetically recyclable
palladium nanoparticles (Fe3O4‐Pd) for oxidative
coupling between amides and olefins at room
temperature. Appl Organometal Chem. 2019;e4985.
[2] (a)P. Xi, F. Yang, S. Qin, D. Zhao, J. Lan, G. Gao, C. Hu, J. You,
J. Am. Chem. Soc. 2010, 132, 1822. (b)T. W. Lyons, K. L. Hull,
M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 4455.