10.1002/anie.202017234
Angewandte Chemie International Edition
RESEARCH ARTICLE
[2]
[3]
[4]
[5]
U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C.
Moore, K. Robins, Nature 2012, 485, 185–194.
software more enantioselective aldoxime dehydratases can be
generated.
K. Drauz, H. Gröger, O. May, (eds.), Enzyme Catalysis in Organic
Synthesis, vol. 1-3, 3. ed., Wiley-VCH, Weinheim, 2012.
T. Betke, P. Rommelmann, K. Oike, Y. Asano, H. Gröger, Angew. Chem.
2017, 129, 12533-12538; Angew. Chem. Int. Ed. 2017, 56, 12361–12366.
T. Betke, J. Higuchi, P. Rommelmann, K. Oike, T. Nomura, Y. Kato, Y.
Asano, H. Gröger, ChemBioChem 2018, 19, 768–779.
H. Gröger, Y. Asano, J. Org. Chem. 2020, 85, 6243–6251.
Y. Kato, K. Nakamura, H. Sakiyama, S. G. Mayhew, Y. Asano,
Biochemistry 2000, 39, 800–809.
Conclusion
In conclusion, the stereochemically unique and to the best of
our knowledge unprecedented stereochemical phenomena of
aldoxime dehydratases, which are able to enantioselectively
dehydrate E- and Z-aldoximes to the opposite enantiomeric forms
of a chiral nitrile, has been rationalized by means of a molecular
modelling study utilizing an MOE software. This modelling gave a
detailed insight why with the same enzyme the use of racemic E-
and Z-aldoximes led to the opposite forms of the chiral nitrile.
Furthermore, mutants with an increased and decreased cavity
have been calculated, which subsequently showed the expected
and theoretically predicted decrease and increase of the
enantioselectivities also in the experimental biotransformations.
In addition, based on this validated model it was possible to
rationally design the mutant OxdRE-Leu145Phe with a decreased
size of the cavity, which then gave superior enantioselectivities
compared to the known wild-type enzyme with excellent E-values
of up to E>200. Thus, this theoretical study will also serve as a
basis for predicting aldoxime dehydratase mutants with improved
stereochemical properties for novel substrates in the future.
[6]
[7]
[8]
[9]
S. X. Xie, Y. Kato, Y. Asano, Biosci. Biotechnol. Biochem. 2001, 65,
2666–2672.
Y. Kato, R. Ooi, Y. Asano, J. Mol. Catal. B: Enzym. 1999, 6, 249–256.
[10] R. Metzner, S. Okazaki, Y. Asano, H. Gröger, ChemCatChem 2014, 6,
3105–3109.
[11] J. E. Choi, S. Shinoda, Y. Asano, H. Gröger, Catalysts 2020, 10, 362.
[12] A. Hinzmann, S. Glinski, M. Worm, H. Gröger, J. Org. Chem. 2019, 84,
4867–4872.
[13] C. Plass, A. Hinzmann, M. Terhorst, W. Brauer, K. Oike, H. Yavuzer, Y.
Asano, A. J. Vorholt, T. Betke, H. Gröger, ACS Catal. 2019, 9, 5198–
5203.
[14] J. Nomura, H. Hashimoto, T. Ohta, Y. Hashimoto, K. Wada, Y. Naruta,
K.-I. Oinuma, M. Kobayashi, Proc. Nat. Acad. Scienc. USA 2013, 110,
2810–2815.
[15] Molecular Operating Environment (MOE) 2019.01 (Chemical Computing
Group ULC, Montreal, QC, Canada, 2019).
[16] J. Davila-Calderon, N. N. Patwardhan, L.-Y. Chiu, A. Sugarman, Z. Cai,
S. R. Penutmutchu, M.-L. Li, G. Brewer, A. E. Hargrove, B. S. Tolbert,
Nat. Commun. 2020, 11, 4775.
[17] A. B. Bueno, B. Sun, F. S. Willard, D. Feng, J. D. Ho, D. B. Wainscott, A.
D. Showalter, M. Vieth, Q. Chen, C. Stutsman, B. Chau, J. Ficorilli, F. J.
Agejas, G. R. Cumming, A. Jiménez, I. Rojo, T. S. Kobilka, B. K. Kobilka,
K. W. Sloop, Nat. Chem. Biol. 2020, 16, 1105–1110.
Acknowledgements
We gratefully acknowledge generous support from the
Fachagentur Nachwachsende Rohstoffe (FNR) and the German
Federal Ministry of Food and Agriculture (BMEL), respectively,
within the funding program on the utilization of biorenewables
(Grant No. 22001716). Thanks are also due to ERATO Asano
Active Enzyme Molecule Project of Japan Science and
Technology Agency (Grant No. JPMJER1102). We also
gratefully acknowledge generous support by a grant-in-aid for
Scientific Research (S) from The Japan Society for Promotion of
Sciences to Y.A. (Grant No. 17H06169). Furthermore, generous
support from the German Academic Exchange Service (DAAD)
and Japan Society for the Promotion of Science (JSPS) within
the joint bilateral DAAD-JSPS funding program “PPP Japan
2017” (DAAD grant no. 57345566) is gratefully acknowledged,
and in addition H.Y. thanks the German Academic Exchange
Service (DAAD) for a travel grant. We thank Dr. Fumihiro
Motojima for technical assistance and help in introducing the
MOE software to H.Y..
[18] F.-A. Khan, N. Nasim, Y. Wang, A. Alhazmi, M. Sanam, Z. Ul-Haq, D.
Yalamati, M. Ulanova, Z.-H. Jiang, Eur. J. Med. Chem. 2020, 209,
112863.
[19] W.-L. Ye, C. Shen, G.-L. Xiong, J.-J. Ding, A.-P. Lu, T.-J. Hou, D.-S. Cao,
J. Chem. Inform. Mod. 2020, 60, 4216–4230.
[20] J. K. Leman, B. D. Weitzner, S. M. Lewis, J. Adolf-Bryfogle, N. Alam, R.
F. Alford, M. Aprahamian, D. Baker, K. A. Barlow, P. Barth, B. Basanta,
B. J. Bender, K. Blacklock, J. Bonet, S. E. Boyken, P. Bradley, C. Bystroff,
P. Conway, S. Cooper, B. E. Correia, B. Coventry, R. Das, R. M. de Jong,
F. DiMaio, L. Dsilva, R. Dunbrack, A. S. Ford, B. Frenz, D. Y. Fu, C.
Geniesse, L. Goldschmidt, R. Gowthaman, J. J. Gray, D. Gront, S. Guffy,
S. Horowitz, P.-S. Huang, T. Huber, T. M. Jacobs, J. R. Jeliazkov, D. K.
Johnson, K. Kappel, J. Karanicolas, H. Khakzad, K. R. Khar, S. D. Khare,
F. Khatib, A. Khramushin, I. C. King, R. Kleffner, B. Koepnick, T.
Kortemme, G. Kuenze, B. Kuhlman, D. Kuroda, J. W. Labonte, J. K. Lai,
G. Lapidoth, A. Leaver-Fay, S. Lindert, T. Linsky, N. London, J. H. Lubin,
S. Lyskov, J. Maguire, L. Malmström, E. Marcos, O. Marcu, N. A. Marze,
J. Meiler, R. Moretti, V. K. Mulligan, S. Nerli, C. Norn, S. Ó'Conchúir, N.
Ollikainen, S. Ovchinnikov, M. S. Pacella, X. Pan, H. Park, R. E.
Pavlovicz, M. Pethe, B. G. Pierce, K. B. Pilla, B. Raveh, P. D. Renfrew,
S. S. R. Burman, A. Rubenstein, M. F. Sauer, A. Scheck, W. Schief, O.
Schueler-Furman, Y. Sedan, A. M. Sevy, N. G. Sgourakis, L. Shi, J. B.
Siegel, D.-A. Silva, S. Smith, Y. Song, A. Stein, M. Szegedy, F. D. Teets,
S. B. Thyme, R. Y.-R. Wang, A. Watkins, L. Zimmerman, R. Bonneau,
Nat. Methods 2020, 17, 665–680.
Conflicts of Interest
The authors declare no conflicts of interest.
[21] Clairfeuille, T.; Buchholz, K. R.; Li, Q.; Verschueren, E.; Liu, P.;
Sangaraju, D.; Park, S.; Noland, C. L.; Storek, K. M.; Nickerson, N. N.;
Martin, L.; Dela Vega, T.; Miu, A.; Reeder, J.; Ruiz-Gonzalez, M.; Swem,
D.; Han, G.; DePonte, D. P.; Hunter, M. S.; Gati, C.; Shahidi-Latham, S.;
Xu, M.; Skelton, N.; Sellers, B. D.; Skippington, E.; Sandoval, W.; Hanan,
E. J.; Payandeh, J.; Rutherford, S. T. Structure of the essential inner
membrane lipopolysaccharide-PbgA complex. Nature 2020, 584, 479–
483. DOI: 10.1038/s41586-020-2597-x.
Keywords: aldoxime dehydratase • chiral nitriles • docking •
enantioselectivity • rational protein design
References
[1]
A. Kleemann, J. Engel, B. Kutscher, D. Reichert, Pharmaceutical
substances: Syntheses, patents, applications; Thieme, Stuttgart, New
York, 2001.
[22] C. Czekelius, E. M. Carreira, Angew. Chem. 2005, 117, 618–621; Angew.
Chem. Int. Ed. 2005, 44, 612–615.
6
This article is protected by copyright. All rights reserved.