Organic & Biomolecular Chemistry
Communication
blocks, which serve as valuable intermediates for the formation 11 B. Figadère and X. Franck, Sci. Synth., 2005, 26, 243.
of medicinally relevant heterocyclic motifs. Two complementary 12 V. Pace, W. Holzer and B. Olofsson, Increasing the reactivity
routes are presented leading to a wide range of α,α′-bis-chloro
ketones (3) and aryl keto acetals (5) with high throughputs. We
of amides towards organometallic reagents: An overview, 2014,
vol. 356.
added two synthetically valuable transformations to the “flow 13 W. S. Bechara, G. Pelletier and A. B. Charette, Nat. Chem.,
toolbox” using the identical flow reactor setup as previously
2012, 4, 228–234.
reported for lithiation/borylation43 or/sulfination44 and 14 R. K. Dieter, Tetrahedron, 1999, 55, 4177–4236.
Matteson chemistry.46 This strongly emphasizes the usefulness 15 X. J. Wang, L. Zhang, X. Sun, Y. Xu, D. Krishnamurthy and
and scope of this flow platform and showcases the synthetic
utility of organolithium chemistry. The reported flow setup is 16 M. McLaughlin, K. M. Belyk, G. Qian, R. A. Reamer and
equally suitable for the delivery of small quantities for medic- C. Y. Chen, J. Org. Chem., 2012, 77, 5144–5148.
inal chemistry purposes or for larger quantities for early devel- 17 E. A. Chung, C. W. Cho and K. H. Ahn, J. Org. Chem., 1998,
opment phases. The straightforward concept boosts the syn- 63, 7590–7591.
thetic utility of organolithium chemistry, reduces development 18 M. Masubuchi, K. Kawasaki, H. Ebiike, Y. Ikeda, S. Tsujii,
C. H. Senanayake, Org. Lett., 2005, 7, 5593–5595.
times and appeals attractive to the scientific community.
S. Sogabe, T. Fujii, K. Sakata, Y. Shiratori, Y. Aoki,
T. Ohtsuka and N. Shimma, Bioorg. Med. Chem. Lett., 2001,
11, 1833–1837.
Conflicts of interest
19 C. Liu, M. Achtenhagen and M. Szostak, Org. Lett., 2016,
18, 2375–2378.
20 F. G. J. Odille, A. Stenemyr and F. Pontén, Org. Process Res.
Dev., 2014, 18, 1545–1549.
There are no conflicts to declare.
21 J. Mulzer, A. Mantoulidis and O. Elisabeth, J. Org. Chem.,
2000, 65, 7456–7467.
Acknowledgements
22 O. Delgado, G. Heckmann, H. M. Mu and T. Bach, J. Org.
Chem., 2006, 71, 4599–4608.
23 P. G. Lima, C. Sequeira and P. R. R. Costa, Tetrahedron
Lett., 2001, 42, 3525–3527.
24 A. Avenoza, H. Busto and J. M. Peregrina, Tetrahedron,
2002, 58, 10167–10171.
25 X. Creary, J. Org. Chem., 1987, 52, 5026–5030.
26 J. Barluenga, L. Llavona, M. Yus and J. M. Concellon,
Tetrahedron, 1991, 47, 7875–7886.
27 J. Barluenga, L. Llavona, M. Yus and J. M. Concellon,
Synthesis, 1990, 1003–1005.
28 L. Llavona, J. M. Concellon and M. Yus, J. Chem. Soc.,
Perkin Trans. 1, 1991, 8, 297–300.
The authors are very thankful for the support of the Novartis
Continuous Manufacturing Unit. We would like to thank
Stephane Schmitt for analytical support. The authors would
like to dedicate this article to the living memory of Dr Mark
Meisenbach (1966–2020), an admirable chemist, manager and
person. You are dearly missed in Novartis.
Notes and references
1 B. Eftekhari-Sis, M. Zirak and A. Akbari, Chem. Rev., 2013,
113, 2958–3043.
2 B. Eftekhari-Sis and M. Zirak, Chem. Rev., 2015, 115, 151–264.
3 A. Ayati, S. Emami, A. Asadipour, A. Shafiee and 29 J. B. L. Llavona, J. M. Concellon and M. Yus, J. Chem. Soc.,
A. Foroumadi, Eur. J. Med. Chem., 2015, 97, 699–718. Perkin Trans. 1, 1990, 7, 417.
4 A. R. Katritzky, Comprehensive Heterocyclic Chemistry III, 30 J.-I. Yoshida, Flash Chemistry: Fast Organic Synthesis in
2008, vol. 6. Microsystems, John Wiley and Sons, Chichester (UK), 2008.
5 E. Vitaku, D. T. Smith and J. T. Njardarson, J. Med. Chem., 31 A. Nagaki, H. Kim, Y. Moriwaki, C. Matsuo and
2014, 57, 10257–10274. J.-I. Yoshida, Chem. – Eur. J., 2010, 16, 11167–11177.
6 H. L. Lightfoot, F. W. Goldberg and J. Sedelmeier, ACS Med. 32 H. Kim, A. Nagaki and J.-I. Yoshida, Nat. Commun., 2011, 2,
Chem. Lett., 2019, 10, 153–160. 264–266.
7 F. Ayala-Mata, C. Barrera-Mendoza, H. A. Jiménez-Vázquez, 33 A. Nagaki, K. Imai, S. Ishiuchi and J.-I. Yoshida, Angew.
E. Vargas-Díaz and L. G. Zepeda, Molecules, 2012, 17,
13864–13878.
8 C. Sibbersen, J. Palmfeldt, J. Hansen, N. Gregersen,
Chem., Int. Ed., 2015, 54, 1914–1918.
34 A. Nagaki, Y. Tsuchihashi, S. Haraki and J.-I. Yoshida, Org.
Biomol. Chem., 2015, 13, 7140–7145.
K. A. Jørgensen and M. Johannsen, Chem. Commun., 2013, 35 A. Nagaki, S. Ishiuchi, K. Imai, K. Sasatsuki, Y. Nakahara
49, 4012–4014. and J.-I. Yoshida, React. Chem. Eng., 2017, 2, 862–870.
9 E. Cleator, J. P. Scott, P. Avalle, M. M. Bio, S. E. Brewer, 36 J.-I. Yoshida, H. Kim and A. Nagaki, J. Flow Chem., 2017, 7,
A. J. Davies, A. D. Gibb, F. J. Sheen, G. W. Stewart, 1–5.
D. J. Wallace and R. D. Wilson, Org. Process Res. Dev., 2013, 37 A. Nagaki, H. Yamashita, Y. Takahashi, S. Ishiuchi, K. Imai
17, 1561–1567. and J.-I. Yoshida, Chem. Lett., 2018, 47, 71–73.
10 M. Adamczyk, D. D. Johnson, P. G. Mattingly, Y. Pan and 38 S. Y. Moon, S. H. Jung, U. Bin Kim and W. S. Kim, RSC
R. E. Reddy, Synth. Commun., 2002, 32, 3199–3205.
Adv., 2015, 5, 79385–79390.
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 2420–2424 | 2423