ꢀ
G. Stavber and Z. Casar
J = 7.5 Hz, 1H); 13C (125 MHz, CDCl3, ppm) d 174.3, 141.5, 97.2,
83.2, 35.14, 24.8, 24.7, 19.0, 15.9 (broad, C-B); IR (neat): n = 2979,
2935, 1753, 1646, 1372, 1322, 1143 cmꢂ1. Anal. Calcd for
C12H21BO4: C, 60.03; H, 8.82%. Found: C, 60.25; H, 9.03%.
Supporting information
Supporting information may be found in the online version of
this article, including characterization data of known and copies
of spectra for all new borylated compounds, specific procedures
and experimental protocols for gram-scale experiments empha-
sizing ’green’ isolation procedures. A study for development of
a new oxidation method and conceptual experiments showing
’on water’ accelerated borylation are also included.
4,4,5,5-Tetramethyl-2-(4-trifluoromethyl)phenethyl)-1,3,2-dioxoborolane (6c)
1
11B (160 MHz, CDCl3, ppm) d 33.7 (br); H NMR (500 MHz, CDCl3,
ppm) d 7.66–7.55 (m, 2H), 7.46–7.35 (m, 2H), 2.84 (t, J = 8.1 Hz,
2H), 1.26 (s, 12H), 1.16 (t, J = 8.1 Hz, 2H); 19 F (470 MHz, CDCl3,
ppm) d ꢂ63.2; 13C (125 MHz, CDCl3, ppm) d 148.5, 128.3, 128.2,
125.1, 125.0, 83.2, 29.8, 24.8, 12.5 (broad, C-B); IR (neat):
n = 2982, 2938, 1326, 1162, 1143, 1115 cm-1. Anal. Calcd for
C15H20BF3O2: C, 60.03; H 6.72%. Found: C, 59.92; H, 6.62%.
Acknowledgments
ꢀ
We thank A. Vesković for help with experimental work, S. Borisek
(E)-2-(4-Methoxystryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (8d)
ꢀ
ꢀ
ꢀ
and Dr M. Crnugelj for NMR spectra, D. Orkic and M. Ustar for GC
1
ꢀ
Liquid; 11B (160 MHz, CDCl3, ppm) d 30.2 (br); H NMR (500 MHz,
and HPLC analysis, M. Borisek for IR spectra, Dr S. J. Roseblade
(Johnson Matthey) for chiral HPLC method development, Dr
D. Urankar and Prof. J. Kosmrlj (University of Ljubljana) for
CDCl3, ppm) d 7.45 (m, 2H), 7.36 (d, J = 18.4 Hz, 1H), 6.87
(m, 2H), 6.05 (d, J = 18.4 Hz, 1H), 3.82 (s, 3H), 1.30 (s, 12H); 13C
(125 MHz, CDCl3, ppm) d 160.3, 149.0, 130.4, 128.9, 128.4, 113.9,
113.6, 83.1, 55.2, 24.7; IR (neat): n = 2977, 2934, 1625, 1605,
1511, 1421, 1356, 1143, 1035, 996, 970, 815 cmꢂ1. Anal Calcd for
C15H21BO3: C, 69.26; H, 8.14%. Found: C, 69.41; H, 8.02%.
ꢀ
HRMS analysis.
References
[1] a) A. Pelter, K. Smith, H. C. Brown, Borane Reagents, Academic Press,
London, 1988; b) D. S. Matteson, Reactivity and Structure Concept in
Organic Synthesis: Stereodirected Synthesis with Organoboranes, 32,
Springer, New York, 1994; c) D. G. Hall (Ed.), Boronic Acids: Preparation
and Applications in Organic Synthesis and Medicine, Wiley-VCH, Wein-
heim, 2005; d) G. A. Molander, R. Figueroa, Aldrichim. Acta 2005, 38, 49;
e) E. R. Burkhardt, K. Matos, Chem. Rev. 2006, 106, 2617; f) G. A. Molan-
der, N. Ellis, Acc. Chem. Res. 2007, 40, 275; g) N. A. Petasis, Aust. J. Chem.
2007, 60, 795; h) S. Darses, J.-P. Genet, Chem. Rev. 2008, 108, 288; (i) I. A.
I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem.
Rev. 2010, 110, 890.
[2] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; b) D. S. Matteson,
Chem. Rev. 1989, 89, 1535; c) D. S. Matteson, Tetrahedron 1989, 45,
1859; d) D. S. Matteson, Tetrahedron 1998, 54, 10555; e) G. J. Irvine,
M. J. G. Lesley, T. B. Marder, N. C. Norman, C. R. Rice, E. G. Robins,
W. R. Roper, G. R. Whittell, L. J. Wright, Chem. Rev. 1998, 98, 2685;
f) A. Suzuki, J. Organomet. Chem. 1999, 576, 147; g) V. M. Dembitsky,
H. A. Ali, M. Srebnik, Appl. Organometal. Chem. 2003, 17, 327; h) I.
Nakamura, Y. Yamamoto, Chem. Rev. 2004, 104, 2127; i) C. Kleeberg,
L. Dang, Z. Lin, T. B. Marder, Angew. Chem. Int. Ed. 2009, 48, 5350; j) C.
T. Yang, Z. Q. Zhang, H. Tajuddin, C. C. Wu, J. Liang, J. H. Liu, Y. Fu, M.
Czyzewska, P. G. Steel, T. B. Marder, L. Liu, Angew. Chem. Int. Ed.
2012, 51, 528.
[3] a) W. Yang, X. Gao, B. Wang, Med. Res. Rev. 2003, 23, 346; b) D. S. Mat-
teson, Med. Res. Rev. 2008, 28, 233; c) S. J. Baker, C. Z. Ding, T. Akama,
Y.-K. Zhang, V. Hernandez, Y. Xia, Future Med. Chem. 2009, 1, 1275; d)
V. M. Dembitsky, A. A. Al Quntar, M. Srebnik, Chem. Rev. 2011,
111, 209; e) R. Smoum, A. Rubinstein, V. M. Dembitsky, M. Srebnik,
Chem. Rev. 2012, 112, 4156.
[4] a) H. C. Brown, B. C. Subba Rao, J. Am. Chem. Soc. 1956, 78, 5694; b) K.
Burgess, M. J. Ohlmeyer, Chem. Rev. 1991, 91, 1179; c) H. Wadepohl,
Angew. Chem. Int. Ed. 1997, 36, 2441; d) I. Beletskaya, A. Pelter, Tetra-
hedron 1997, 53, 4957; e) C. M. Crudden, D. Edwards, Eur. J. Org.
Chem. 2003, 4695; f) D. R. Edwards, Y. B. Hleba, C. J. Lata, L. A. Cal-
houn, C. M. Crudden, Angew. Chem. Int. Ed. 2007, 46, 7799; g) Y.
Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131, 3160; h) D. Noh,
H. Chea, J. Ju, J. Yun, Angew. Chem. Int. Ed. 2009, 48, 6062.
[5] a) T. Ishiyama, N. Miyaura, Chem. Rec. 2004, 3, 271; b) T. B. Marder, N.
C. Norman, Top. Catal. 1998, 5, 1–4, 63.
Protocol for ’On Water’ Asymmetric b-Borylation of Sitagliptin Intermediate
(9) to Corresponding b-Boronic Ester (10) (see supporting information for
further details and explanation)
In a dry, two-necked, round-bottom flask were placed catalyst
CuCO3 basic (0.02 mmol, 4 mol% according to starting material 9)
and Walphos ligand (0.025 mmol, 5 mol%; see Table 3 and
Scheme 6) under a nitrogen atmosphere. Afterwards, 2.5ml
deionized water was added and the reaction mixture was
vigorously stirred (900 rpm) at ambient temperature for 20 min.
The b-borylating reagent bis(pinacolato)diboron (0.55 mmol,
140 mg, 1.1 equiv.) was then added in one portion to the reaction
system and stirred for an hour. Finally, a,b-unsaturated ester (E)-
methyl-4-(2,4,5-trifluorophenyl)-but-2-enoate (9) (0.5mmol, 115mg)
was added to the reaction system and the reaction mixture was
intensively stirred at ambient temperature for 20h. The reaction
mixture was diluted with brine (5ml) and extracted with EtOAc
(2 ꢁ 40 ml). Combined organic layers were again washed with brine
(30 ml) and dried over Na2SO4, and organic solvent was removed
under reduced pressure. The crude product was simply purified
by flash chromatography (silica; EtOAc) to obtain the final product
1
(10; 150 mg; 84% yield) as determined by H, 11B, 13C NMR and
high-resolution mass spectrometry (HRMS) analysis. Enantiomeric
purity (95% ee) was determined using high-performance liquid
chromatography (HPLC) chiral analysis.
Methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(2,4,5-trifluorophenyl)-
butanoate (10)
Yellow liquid; 11B (160 MHz, CDCl3, ppm) d 33.6 (br); 1H NMR
(500 MHz, CDCl3, ppm) d 7.01–7.05 (m, 1H), 6.80–6.86 (m, 1H),
3.65 (s, 3H), 2.75 (dd, J = 15 Hz, J = 5.0 Hz, 1H), 2.61 (dd, J = 15 Hz,
J = 5.0 Hz, 1H), 2.37 (d, J = 10.1 Hz, 2H), 1.60 (pentet, 1H), 1.20
(m, 12H); 13C NMR (125 MHz, CDCl3, ppm) d 173.7, 156.0
(dd, J = 242.5 Hz, J = 2.5 Hz), 149.4 (m), 147.3 (m), 124.5 (m),
118.5 (dd, J = 20.2 Hz, J = 6.3 Hz), 105.0 (dd, J = 28.8 Hz,
J = 21.3 Hz), 83.5, 51.5, 34.5, 28.5, 24.7, 20.4 (broad C–B); 19 F
[6] J. A. Schiffner, K. Müther, M. Oestreich, Angew. Chem. Int. Ed. 2010,
49, 1194.
[7] H. Braunschweig, F. Guethlein, Angew. Chem. Int. Ed. 2011, 50, 12613.
[8] a) V. Lillo, A. Bonet, E. Fernández, Dalton Trans. 2009, 2899; b) L.
Dang, Z. Lin, T. B. Marder, Chem. Commun. 2009, 3987; c) A. Bonet,
C. Sole, H. Gulyás, E. Fernández, Curr. Org. Chem. 2010, 14, 2531; d)
A. Bonet, H. Gulyás, E. Fernández, Curr. Org. Chem. 2011, 15, 3908;
e) E. Hartmann, D. J. Vyasab, M. Oestreich, Chem. Commun. 2011,
47, 7917; f) J. Cid, H. Gulyás, J. J. Carbó, E. Fernández, Chem. Soc.
Rev. 2012, 41, 3558.
NMR (470 MHz, CDCl3, ppm)
d
ꢂ144.7 (m), ꢂ138.1 (m),
ꢂ120.3 (m); IR (neat): n = 2980, 1737, 1631, 1518, 1381,1329,
1143 cm-1. HRMS (electrospray ionization): calculated mass ion
for C17H23BF3O4 (M + H)+: 358.1672; found: 358.1684.
wileyonlinelibrary.com/journal/aoc
Copyright © 2013 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2013, 27, 159–165