ACS Catalysis
Page 4 of 6
W.; Dong, G. Direct activation of relatively unstrained carbon–
Corresponding Author
carbon bonds in homogeneous systems. Org. Chem. Front. 2014, 1,
567-581. (d) Wang, T.; Jiao, N. Direct Approaches to Nitriles via
Highly Efficient Nitrogenation Strategy through C–H or C–C Bond
Cleavage. Acc. Chem. Res. 2014, 47, 1137-1145. (e) Tobisu, M.;
Chatani, N. Catalytic reactions involving the cleavage of carbon–
cyano and carbon–carbon triple bonds. Chem. Soc. Rev. 2008, 37,
300-307. (f) Jun, C.-H. Transition metal-catalyzed carbon–carbon
bond activation. Chem. Soc. Rev. 2004, 33, 610-618. (g) Liu, H.;
Feng, M.; Jiang, X. Unstrained Carbon-Carbon Bond Cleavage.
Chem. Asian J. 2014, 9, 3360-3389. (h) Kim, D.-S.; Park, W.-J.;
Jun, C.-H. Metal–Organic Cooperative Catalysis in C–H and C–C
Bond Activation. Chem. Rev. 2017, 117, 8977-9015.
(3) (a) Hypervalent Iodine Chemistry: Modern Developments in
Organic Synthesis; Topics in Current Chemistry; Wirth, T., Ed.;
Springer: Berlin, 2003; Vol. 224, pp 1-248. (b) Wendlandt, A. E.;
Stahl, S. S. Quinone-Catalyzed Selective Oxidation of Organic
Molecules. Angew. Chem. Int. Ed. 2015, 54, 14638-14658.
(4) (a) Mꢀhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe,
A.; Waldvogel, S. R. Modern Electrochemical Aspects for the
Synthesis of Value-Added Organic Products. Angew. Chem. Int. Ed.
2018, 57, 6018-6041. (b) Jiang, Y.-Y.; Xu, K.; Zeng, C.-C. Use of
Electrochemistry in the Synthesis of Heterocyclic Structures. Chem.
Rev. 2018, 118, 4485-4540. (c) Feng, R.; Smith, J. A.; Moeller, K.
D. Anodic Cyclization Reactions and the Mechanistic Strategies
That Enable Optimization. Acc. Chem. Res. 2017, 50, 2346-2352.
(d) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic
1
2
3
4
5
6
7
8
Notes
The authors declare no competing financial interest.
Supporting Information.
Experimental procedures, analytical data for products, NMR spec-
tra of products. The supporting information is available free of
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
Financial support from the National Natural Science Foundation
of China (21632001, 81821004, 21772002), the National Basic
Research Program of China (973 Program) (No. 2015CB856600),
and the Drug Innovation Major Project (No. 2018ZX09711-001)
are greatly appreciated. We thank Xiaoxue Yang and Cheng
Zhang in this group for reproducing the results of 1o and 1h.
REFERENCES
(1) (a) Hili, R.; Yudin, A. K. Making carbon-nitrogen bonds in
biological and chemical synthesis. Nat. Chem. Biol. 2006, 2, 284-
287. (b) Ricci, A. Amino Group Chemistry: From Synthesis to the
Life Sciences; Wiley-VCH: Weinheim, 2008; pp 1-490. (c) Davies,
H. M. L.; Long, M. S. Recent Advances in Catalytic Intramolecular
C-H Aminations. Angew. Chem. Int. Ed. 2005, 44, 3518- 3520. (d)
Zard, S. Z. Recent progress in the generation and use of nitrogen-
centred radicals. Chem. Soc. Rev. 2008, 37, 1603-1618. (e) Lyons,
T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed C−H
Functionalization Reactions. Chem. Rev. 2010, 110, 1147-1169. (f)
Hickman, A. J.; Sanford, M. S. High-valent organometallic copper
and palladium in catalysis. Nature, 2012, 484, 177-185. (g) Davies,
H. M. L.; Manning, J. R. Catalytic C–H functionalization by metal
carbenoid and nitrenoid insertion. Nature 2008, 451, 417-424. (h)
Lu, H.; Zhang, X. P. Catalytic C–H functionalization by metal-
loporphyrins: recent developments and future directions. Chem.
Soc. Rev. 2011, 40, 1899-1909. (i) Roizen, J. L.; Harvey, M. E.;
Bois, J. D. Metal-Catalyzed Nitrogen-Atom Transfer Methods for
the Oxidation of Aliphatic C–H Bonds. Acc. Chem. Res. 2012, 45,
911-922. (j) Shin, K.; Kim, H.; Chang, S. Transition-Metal-
Catalyzed C–N Bond Forming Reactions Using Organic Azides as
the Nitrogen Source: A Journey for the Mild and Versatile C–H
Amination. Acc. Chem. Res. 2015, 48, 1040-1052. (k) Song, G.;
Wang, F.; Li, X. C–C, C–O and C–N bond formation via rhodi-
um(III)-catalyzed oxidative C–H activation. Chem. Soc. Rev. 2012,
41, 3651-3678. (l) Yeung, C. S.; Dong, V. M. Catalytic Dehydro-
genative Cross-Coupling: Forming Carbon−Carbon Bonds by Oxi-
dizing Two Carbon−Hydrogen Bonds. Chem. Rev. 2011, 111,
1215-1292. (m) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rho-
dium-Catalyzed C−C Bond Formation via Heteroatom-Directed
C−H Bond Activation. Chem. Rev. 2010, 110, 624-655. (n) Wen-
cel-Delord, J.; Drőge, T.; Liu, F.; Glorius, F. Towards mild metal-
catalyzed C–H bond activation. Chem. Soc. Rev. 2011, 40, 4740-
4761. (o) Liu, Y.; Yi, H.; Lei, A. Oxidation-Induced C-H Func-
tionalization: A Formal Way for C-H Activation. Chin. J. Chem.
2018, 36, 692-697. (p) Gulías, M.; Mascareñas, J. L. Metal-
Catalyzed Annulations through Activation and Cleavage of C−H
Bonds. Angew. Chem. Int. Ed. 2016, 55, 11000-11019.
Electrochemical Methods Since 2000: On the Verge of
a
Renaissance. Chem. Rev. 2017, 117, 13230-13319. (e) Horn, E. J.;
Rosen, B. R.; Baran, P. S. Synthetic Organic Electrochemistry: An
Enabling and Innately Sustainable Method. ACS Cent. Sci. 2016, 2,
302-308. (f) Waldvogel, S. R.; Selt, M. Electrochemical Allylic
Oxidation of Olefins: Sustainable and Safe. Angew Chem. Int. Ed.
2016, 55, 12578-12580. (g) Yoshida, J.-i.; Kataoka, K.; Horcajada,
R.; Nagaki, A. Modern Strategies in Electroorganic Synthesis.
Chem. Rev. 2008, 108, 2265-2299. (h) Sperry, J. B.; Wright, D. L.
The application of cathodic reductions and anodic oxidations in the
synthesis of complex molecules. Chem. Soc. Rev. 2006, 35, 605-
621. (i) Jutand, A. Contribution of Electrochemistry to
Organometallic Catalysis. Chem. Rev. 2008, 108, 2300-2347.
(5) For some reviews on electrochemical C-H functionalization,
see: (a) Wiebe, A.; Gieshoff, T.; Mohle, S.; Rodrigo, E.; Zirbes, M.;
Waldvogel, S. R. Electrifying Organic Synthesis. Angew. Chem.
Int. Ed. 2018, 57, 5594-5619. (b) Tang, S.; Liu, Y.; Lei, A.
Electrochemical Oxidative Cross-coupling with Hydrogen
Evolution: A Green and Sustainable Way for Bond Formation.
Chem. 2018, 4, 27-45. (c) Hou, Z.-W.; Mao, Z.-Y.; Xu, H.-C.
Recent Progress on the Synthesis of (Aza)indoles through
Oxidative Alkyne Annulation Reactions. Synlett, 2017, 28, 1867-
1872. (d) Kärkäs, M. D. Electrochemical strategies for C–H func-
tionalization and C–N bond formation. Chem. Soc. Rev. 2018, 47,
5786-5865.
(6) For selected recent examples on electrochemical C-H func-
tionalization, see: (a) Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.;
Chen, K.; Eastgate, M. D.; Baran, P. S. Scalable and sustainable
electrochemical allylic C–H oxidation. Nature 2016, 533, 77-81. (b)
Fu, N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Metal-catalyzed
electrochemical diazidation of alkenes. Science, 2017, 357, 575-
579. (c) Badalyan, A.; Stahl, S. S. Cooperative electrocatalytic al-
cohol oxidation with electron-proton-transfer mediators. Nature,
2016, 535, 406-410. (d) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C.
Electrochemical Difluoromethylarylation of Alkynes. J. Am. Chem.
Soc. 2018, 140, 2460-2464. (e) Hayashi, R.; Shimizu, A.; Yoshida,
J.-i. The Stabilized Cation Pool Method: Metal- and Oxidant-Free
Benzylic C–H/Aromatic C–H Cross-Coupling. J. Am. Chem. Soc.
2016, 138, 8400-8403. (f) Wang, P.; Tang, S.; Huang, P. F.; Lei, A.
Electrocatalytic Oxidant-Free Dehydrogenative C−H/S−H Cross‐
Coupling. Angew. Chem. Int. Ed. 2017, 56, 3009-3013. (g) Wang,
Q.-Q.; Xu, K.; Jiang, Y.-Y.; Liu, Y.-G.; Sun, B.-G.; Zeng, C.-C.
Electrocatalytic Minisci Acylation Reaction of N-Heteroarenes
Mediated by NH4I. Org. Lett. 2017, 19, 5517-5520. (h) Xiong, P.;
(2) For some reviews on C-C functionalization, see: (a) Souil-
lart, L.; Cramer, N. Catalytic C–C Bond Activations via Oxidative
Addition to Transition Metals. Chem. Rev. 2015, 115, 9410-9464.
(b) Chen, F.; Wang, T.; Jiao, N. Recent Advances in Transition-
Metal-Catalyzed Functionalization of Unstrained Carbon–Carbon
Bonds. Chem. Rev. 2014, 114, 8613-8661. (c) Dermenci, A.; Coe, J.
ACS Paragon Plus Environment