Journal of the American Chemical Society
Article
(15) Tang, F.; Moeller, K. D. Tetrahedron 2009, 65, 10863−10875.
(16) For a preliminary account of this work, see: Xu, H.-C.; Moeller,
K. D. Org. Lett. 2010, 12, 1720−1723.
(17) Redden, A.; Moeller, K. D. Org. Lett. 2011, 13, 1678−1681.
(18) Xu, H.-C.; Moeller, K. D. Angew. Chem., Int. Ed. 2010, 49,
8004−8007.
(19) Density functional theory (DFT) was used to calculate
optimized geometries, find transition structures, and compute intrinsic
reaction coordinate pathways using the unrestricted B3LYP functional,
a 6-31G(d) basis set, and the PCM methanol solvation model. Initial
molecular geometries were built and optimized using semi-emperical
methods (AM1) in Spartan (Spartan ’10; Wavefunction, Inc.: Irvine,
CA). These geometries were then imported into the Gaussian 03 suite
of programs (Frisch, M. J.; et al. Gaussian 03, revision C.02; Gaussian,
Inc.: Wallingford, CT, 2004) for all subsequent calculations.
Calculations were performed at the Washington University in Saint
Louis Computational Chemistry Facility. Images of transition
structures were generated using CYLview (Legault, C. Y. CYLview,
These conclusions are consistent with earlier observations of
radical cation/alcohol-trapping reactions and may well have
broad implications for a variety of radical cation-induced
cyclizations. Effort to extend these findings to additional
cyclizations is continuing with the use of new competition
substrates.
ASSOCIATED CONTENT
* Supporting Information
■
S
A general procedure for the electrolysis reaction, procedures for
the synthesis of electrolysis substrates, characterization of
electrolysis substrates, and a description of the computational
methods for calculating optimized geometries, transition
structures, and intrinsic reaction coordinates. This material is
AUTHOR INFORMATION
Corresponding Author
́
■
(20) (a) Wiest, O. J. Am. Chem. Soc. 1997, 119, 5713−5719.
(b) Haberl, U.; Wiest, O.; Steckhan, E. J. Am. Chem. Soc. 1999, 121,
6730−6736. (c) Swinarski, D. J.; Wiest, O. J. Org. Chem. 2000, 65,
6708−6714. (d) Radosevich, A. T.; Wiest, O. J. Org. Chem. 2001, 66,
5808−5813. (e) Oxgaard, J.; Wiest, O. J. Phys. Chem. A 2002, 106,
3967−3974. (f) Donoghue, P. J.; Wiest, O. Chem.-Eur. J. 2006, 12,
7018−7026. (g) Valley, N. A.; Wiest, O. J. Org. Chem. 2007, 72, 559−
566.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work is supported by the National Science Foundation,
grant CHE-0809142. The Washington University Computa-
tional Chemistry Facility was constructed with support from
the National Science Foundation, grant CHE-0443501.
(21) (a) Fry, A. J. Tetrahedron 2008, 64, 2101−2103. (b) Wu, X.;
Davis, A. P.; Lambert, P. C.; Steffen, L. K.; Toy, O.; Fry, A. J.
Tetrahedron 2009, 65, 2408−2414.
(22) Sodupe, M.; Rodríguez-Santiago, J. B. L.; Baerends, E. J. J. Phys.
Chem. A 1999, 103, 166−170.
REFERENCES
■
́
(23) Sastry, G. N.; Bally, T.; Hrouda, V.; Carsky, P. J. Am. Chem. Soc.
(1) Schmittel, M.; Burghart, A. Angew. Chem., Int. Ed. Engl. 1997, 36,
2550−2589.
1998, 120, 9323−9334.
(24) Herbertz, T.; Roth, H. D. J. Am. Chem. Soc. 1998, 120, 11904−
(2) (a) Jang, H.-Y.; Hong, J.-B.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2007, 129, 7004−7005. (b) Beeson, T. D.; Mastracchio, A.; Hong,
J.-B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 27, 582−585.
(c) J. J. D., III; Conrad, J. C.; MacMillan, D. W. C.; R. A. F., II. Angew.
Chem., Int. Ed. 2010, 49, 6106−6110.
(3) (a) Liu, L.; Floreancig, P. E. Org. Lett. 2009, 11, 3152−3155.
(b) Liu, L.; Floreancig, P. E. Angew. Chem., Int. Ed. 2010, 49, 5894−
5897. (c) Tu, W.; Liu, L.; Floreancig, P. E. Angew. Chem., Int. Ed. 2008,
47, 41844187. (d) Green, M. E.; Rech, J. C.; Floreancig, P. E. Angew.
Chem., Int. Ed. 2008, 47, 7317−7320. (e) Jung, H. H.; J. R. S., II;
Floreancig, P. E. Angew. Chem., Int. Ed. 2007, 46, 8464−8467.
(f) Floreancig, P. E. Synlett 2007, 191−203.
(4) (a) Horner, J. H.; Newcomb, M. J. Org. Chem. 2007, 72, 1609−
1616. (b) Horner, J. H.; Lal, M.; Newcomb, M. Org. Lett. 2006, 8,
5497−5500. (c) Bagnol, L.; Horner, J. H.; Newcomb, M. Org. Lett.
2003, 5, 5055−5058.
(5) Horner, J. H.; Bagnol, L.; Newcomb, M. J. Am. Chem. Soc. 2004,
126, 14979−14987.
(6) (a) Crich, D.; Sirai, M.; Brebion, F.; Rumthao, S. Tetrahedron
2006, 62, 6501−6518. (b) Crich, D.; Sirai, M.; Brebion, F.; Rumthao,
S. Org. Lett. 2003, 5, 3767−3769.
11911.
(25) Um, J. M.; Gutierrez, O.; Schoenebeck, F.; Houk, K. N.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 6001−6005.
(26) Bally, T.; Borden, W. T. In Reviews in Computational Chemistry;
Lipkowitz, K. B., Boyd, D. B., Eds.; John Wiley and Sons, Inc.: New
York, 1999; Vol. 13, pp 1−97.
(27) Bally, T.; Sastry, G. N. J. Phys. Chem. A 1997, 101, 7923−7925.
(28) Braïda, B.; Hiberty, P. C. J. Phys. Chem. A 1998, 102, 7872−
7877.
(29) (a) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.
(b) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 13126−13130.
(c) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215−241.
(d) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157−167.
(30) Zipse, H. J. Am. Chem. Soc. 1995, 117, 11798−11806.
(31) Oyama, M.; Nozaki, K. N.; Nagaoka, T.; Okazaki, S. Bull. Chem.
Soc. Jpn. 1990, 63, 33−41.
(32) Mangion, D.; Arnold, D. R. Acc. Chem. Res. 2002, 35, 297−304.
(7) Little, R. D.; Moeller, K. D. Electrochem. Soc. Interface 2002, 11,
36−42.
(8) Tang, F.; Chen, C.; Moeller, K. D. Synthesis 2007, 3411−3420.
(9) Frey, D. A.; Wu, N.; Moeller, K. D. Tetrahedron Lett. 1996, 37,
8317−8320.
(10) Moeller, K. D. Synlett 2009, 8, 1208−1218.
(11) Horner, J. H.; Taxil, E.; Newcomb, M. J. Am. Chem. Soc. 2002,
124, 5402−5410.
(12) Xu, H.-C.; Moeller, K. D. J. Am. Chem. Soc. 2008, 130, 13542−
13543.
(13) Xu, H.-C.; Moeller, K. D. J. Am. Chem. Soc. 2010, 132, 2839−
2844.
(14) Xu, G.; Moeller, K. D. Org. Lett. 2010, 12, 2590−2593 and
references therein.
18344
dx.doi.org/10.1021/ja307046j | J. Am. Chem. Soc. 2012, 134, 18338−18344