4
68
J. Am. Chem. Soc. 2009, 131, 3166. g) J. C. Ruble, A. R. Hurd, T.
A. Johnson, D. A.; Sherry, M. Barbachyn, R. P. L. Toogood, G.
L. Bundy, D. R. Graber, G. M. Kamilar, J. Am. Chem. Soc. 2009,
131, 3991. h) M. J. Mahoney, D. T. Moon, J. Hollinger, E.
Fillion, Tetrahedron Lett. 2009, 50, 4706. i) P. A. Vadola, D.
Sames, J. Am. Chem. Soc. 2009, 131, 16525. j) G. Zhou, J.
Zhang, Chem. Commun. 2010, 46, 6593. k) I. D. Jurberg, B.
Peng, E. Wöstefeld, M. Wasserloos, N. Maulide, Angew. Chem.
Int. Ed. 2012, 51, 1950. l) X. Gao, V. Gaddam, E. Altenhofer, R.
R. Tata, Z. Cai, N. A. Yongpruksa, K. Garimallaprabhakaran, M.
Harmata, Angew. Chem. Int. Ed. 2012, 51, 7016. m) D.-F. Chen,
Z.-Y. Han, Y.-P. He, J. Yu, L.-Z. Gong, Angew. Chem. Int. Ed.
2012, 51, 12307. n) S. Shaaban, N. Maulide, Synlett 2013, 1722.
o) A. Dieckmann, M. T. Richers, A. Y. Platonoova, C. Zhang, D.
Seidel, N. K. Houk, J. Org. Chem. 2013, 78, 4132. p) A. Vidal,
M. Martin-Luna, M. Alajarin, Eur. J. Org. Chem. 2014, 878. q)
Y.-Z. Chang, M.-L. Li, W.-F. Zhao, X. Wen, H. Sun, Q.-L. Xu, J.
Org. Chem. 2015, 80, 9620. r) C. W. Suh, S. J. Kwon, D. Y. Kim,
Org. Lett. 2017, 19, 1334. s) S.-S. Li, L. Zhou, L. Wang, H.
1
2
3
4
5
6
7
8
9
yields with excellent diastereoselectivities (up to >20:1).
Detailed investigation of the reaction mechanism revealed
two key points for the excellent diastereoselectivity: (1)
interconversion of the two diastereomers, and (2) a large
solubility difference in hexane. Further investigations of the
diastereoselective construction of polycycles by means of a
hydride shift/cyclization system are underway in our
laboratory and the results will be reported in due course.
69
70
71
72
73
74
75
76
77
78
10 Supporting
11 http://dx.doi.org/10.1246/cl.******.
Information
is
available
on
79
80
81
82
12 References and Notes
83
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
1
For recent reviews on the synthesis of spirooxindoles, see: a) C.
V. Galliford, K. A. Scheidt, Angew. Chem. Int. Ed., 2007, 46,
8748. b) B. M. Trost, M. K. Brennan, Synthesis 2009, 3003. c) F.
Zhou, Y.-L. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352, 1381. d)
N. R. Ball-Jones, J. J. Badillo A. K. Franz, Org. Biomol. Chem.
2012, 10, 5165. e) L. Hong, R. Wang, Adv. Synth. Catal. 2013,
355, 1023. f) D. Cheng, Y. Ishihara, B. Tan, C. F. Barbas III,
ACS Catal. 2014, 4, 743. ꢀ
84
85
86
87
Zhao, L. Yu, J. Xiao, Org. Lett. 2018, 20, 138.
88 10
89
For the synthesis of tetrahydroquinoline fused-spiroindoles by
internal redox reaction, see: a) M. C. Hablich, I. Deb, C. Kanta
De, D. Seidel, J. Am. Chem. Soc. 2011, 133, 2100. b) P.-F. Wang,
C.-H. Jiang, X. Wen, Q.-L. Xu, H. Sun, J. Org. Chem. 2015, 80,
1155.
90
91
2
a) M. Rottmann, C. McNamara, B. K. S. Yeung, M. C. S. Lee, B.
Zou, B. Russell, P. Seitz, D. M. Plouffe, N. V. Dharia, J. Tan, S.
B. Cohen, K. R. Spencer, G. E. González-Páez, S. B.
Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K.
Schmitt, H. P. Beck, R. Brun, F. Nosten, L. Renia, V. Dartois, T.
H. Keller, D. A. Fidock, E. A. Winzeler, T. T. Diagana, Science,
2010, 329, 1175. b) S. Y. Leong, P. W. Smith, B. Zou, Chin. J.
Chem. 2014, 32, 1217. c) S. Wang, W. Sun, Y. Zhao, D.
McEachern, I. Meaux, C. Barrière, J. A. Stuckey, J. L. Meagher,
L. Bai, L. Liu, C. G. Hoffman-Luca, J. Lu, S. Shangary, S. Yu, D.
Bernard, A. Aguilar, O. Dos-Santos, L. Besret, S. Guerif, P.
Pannier, D. Gorge-Bernat, L. Debussche, Cancer Res. 2014, 74,
5855. ꢀ
92
93 11
94
For the synthesis of tetrahydroquinoline fused-spirooxindoles by
internal redox reaction, see: a) Y.-Y. Han, W.-Y. Han, X. Hou,
X.-M. Zhang, W.-C. Yuan. Org. Lett. 2012, 14, 4054.
Asymmetric version, see: b) W. Cao, X. Liu, J. Guo, L. Lin, X.
Feng, Eur. Chem. J. 2015, 21, 1632.
95
96
97
98 12
99
For the internal redox reaction developed by our group, see: a) K.
Mori, Y. Ohshima, K. Ehara, T. Akiyama, Chem. Lett. 2009, 38,
524. b) K. Mori, T. Kawasaki, S. Sueoka, T. Akiyama, Org. Lett.
2010, 12, 1732. c) K. Mori, S. Sueoka, T. Akiyama, J. Am. Chem.
Soc. 2011, 133, 2424. d) K. Mori, S. Sueoka, T. Akiyama, Chem.
Lett. 2011, 40, 1386. e) K. Mori, T. Kawasaki, T. Akiyama, Org.
Lett. 2012, 14, 1436. f) K. Mori, K. Kurihara, T. Akiyama, Chem.
Commun. 2014, 50, 3729. g) K. Mori, K. Kurihara, S. Yabe, M.
Yamanaka, T. Akiyama, J. Am. Chem. Soc. 2014, 136, 3744. h)
K. Mori, N. Umehara, T. Akiyama, Adv. Synth. Catal. 2015, 357,
901. i) T. Yoshida, K. Mori, Chem. Commun. 2017, 53, 4319;
For an asymmetric version of internal redox reaction catalyzed
by chiral phosphoric acid, see: j) K. Mori, K. Ehara, K. Kurihara,
T. Akiyama, J. Am. Chem. Soc. 2011, 133, 6166.
100
101
102
103
104
105
106
107
108
109
110
111
3
For some natural products and pharmaceuticals containing
tetralin scaffold, see: a) O. Pinto, J. Sardinha, P. D. Vaz, F.
Piedade, M. J. Calhorda, R. Abramovitch, N. Nazareth, M. Pinto,
M. S. J. Nascimento, A. P. Rauter, J. Med. Chem. 2011, 54, 3175.
b) M. Kvasnica, L. Rarova, J. Oklestkova, M. Budesinsky L.
Kohout, Bioorg. Med. Chem. 2012, 20, 6969. c) J. H. Soper, S.
Sugiyama, K. Herbst-Robinson, M. J. James, X. Wang, J. Q.
Trojanowski, A. B. Smith III, V. M. Y. Lee, C. Ballatore, K. R.
Brunden, ACS Chem. Neurosci. 2012, 3, 928. d) M. J. Hatfield, L.
G. Tsurkan, J. L. Hyatt, C. C. Edwards, A. Lemoff, C. Jeffries, B.
Yan, P. M. Potter, J. Nat. Prod. 2013, 76, 36. e) Gamal-Eldeen,
M.; Hamdy, N. A.; Abdel-Aziz, H. A.; El-Hussieny, E. A.; Fakhr,
I. M. I. Eur. J. Med. Chem. 2014, 77, 323.
112 13 The geometry of 1a was determined to be E by X-ray
crystallographic analysis.
113
114 14 Employment of NH-free substrate 1, which has low solubility in
115
116
117
118
hexane, was important to achieve excellent diastereoselectivity.
When the reaction was conducted with more lipophilic N-Bn
analog 3, the diastereomeric ratio remained low even with
hexane (d.r. = 2.5:1).
4
5
F. Manoni, S. J. Connon, Angew. Chem. Int. Ed. 2014, 53, 2628.
B. Wang, H.-J. Leng, X.-Y. Yang, B. Han, C.-L. Rao, L. Liu, C.
Peng, W. Huang, RSC. Adv. 2015, 8, 88272.
6
H.-R. Wu, L. Cheng, D.-L. Kong, H.-Y. Huang, C.-L. Gu, L. Liu,
D. Li, Wang, C.-J.. Org. Lett. 2016, 18, 1382.
7
8
K. Lokesh, V. Kesavan, Eur. J. Org. Chem. 2017, 5689.
For recent reviews on internal redox process, see: a) M. Tobisu,
N. Chatani, Angew. Chem. Int. Ed. 2006, 45, 1683. b) S. C. Pan,
Beilstein J. Org. Chem. 2012, 8, 1374. c) M. Wang,
ChemCatChem 2013, 5, 1291. d) B. Peng, N. Maulide, Chem,
Eur. J. 2013, 19, 13274. e) L. Wang, J. Xiao, Adv. Synth. Catal.
2014, 356, 1137. f) M. C. Haibach, D. Seidel, Angew. Chem. Int.
Ed. 2014, 53, 5010. g) S. J. Kwon, D. Y. Kim, Chem. Rec. 2016,
16, 1191.
119
120 15 Excellent diastereoselectivity was also achieved even with
121
Yb(OTf)3, Gd(OTf)3, and Hf(OTf)4 in hexane.
122 16 High electron donating ability of alkylamine moiety would be
important for promoting the retro-aldol reaction
124 17 Attempts to extend the present reaction to the catalyzed,
123
9
For selected examples of internal redox reactions, see: a) S. J.
Pastine, K. M. McQuaid, D. Sames, J. Am. Chem. Soc. 2005, 127,
12180. b) S. J. Pastine, D. Sames, Org. Lett. 2005, 7, 5429. c) A.
Polonka-Bálint, C. Saraceno, K. Ludányi, A. Bényei, P. Mátyus,
Synlett 2008, 2846. d) C. Zhang, S. Murarka, D. Seidel, J. Org.
Chem. 2009, 74, 419. e) K. M. McQuaid, D. Sames, J. Am. Chem.
Soc. 2009, 131, 402. f) D. Shinkai, H. Murase, T. Hata, H. Urabe,
125
126
127
enantioselective reaction with chiral Sc-complex (with several
Py-BOX ligands) were unsuccessful and 2aa was obtained in
the racemic form.
128 18 CCDC-1818264, 1818265, and 1818266 contains the
129
130
supplementary crystallographic data of 1a, 2aa, and 2a (See SI
for details). This data can be obtained free of charge from The