Job/Unit: O20655
/KAP1
Date: 31-07-12 16:28:11
Pages: 16
K. Cantin, A. Lafleur-Lambert, P. Dufour, J.-F. Morin
(t, J = 6.4 Hz, 6 H), 0.26 (s, 9 H) ppm. 13C NMR (CDCl3, (m), 1000 (s), 878 (s), 808 (s) cm–1. HRMS data for 51 could not
FULL PAPER
100 MHz): δ = 159.4, 140.6, 139.6, 134.7, 134.3, 133.2, 132.3, 132.1,
131.6, 127.0, 127.0, 124.2, 124.0, 123.5, 123.2, 123.0, 122.0, 115.1,
114.7, 104.7, 96.7, 90.8, 90.7, 90.3, 89.9, 88.8, 88.0, 68.2, 32.0, 29.5,
29.4, 29.4, 26.2, 22.8, 18.8, 14.3, 0.1 ppm. HRMS (APPI-TOF):
calcd. for C79H74O2Si [M + H]+ 1083.5531; found 1083.5534. FTIR
be obtained in either ESI or APPI mode.
Supporting Information (see footnote on the first page of this arti-
1
cle): H and 13C NMR spectra for new compounds.
(ATR): ν = 2921 (m), 2853 (m), 1508 (s), 1247 (s), 820 (s) cm–1.
˜
Acknowledgments
Compound 50: A 5 mL round-bottomed flask equipped with a mag-
netic stir bar was charged with compound 49 (0.100 g,
0.0923 mmol), THF (2 mL) and tetrabutylammonium fluoride in
THF (1.0 m, 0.12 mL, 0.120 mmol). The reaction mixture was
stirred at room temperature for 30 min, diluted with CH2Cl2 and
washed with water. The aqueous layer was extracted twice with
CH2Cl2. The organic layers were combined, dried with MgSO4 and
filtered. The solvent was removed under reduced pressure. A 10 mL
round-bottomed flask equipped with a magnetic stir bar was
charged with the crude product (0.094 g, 0.0923 mmol), degassed
THF (2 mL), degassed DIPEA (0.26 mL, 1.48 mmol), PdCl2-
(PPh3)2 (0.0003 g, 0.00037 mmol), CuI (0.0001 g, 0.00074 mmol)
and compound 34 (0.042 g, 0.0185 mmol) under argon. The reac-
tion mixture was stirred at room temperature for 48 h, diluted with
CH2Cl2, washed with NH4Cl, and the aqueous layer was extracted
twice with CH2Cl2. The organic layers were combined, dried with
MgSO4 and filtered. The solvent was removed under reduced pres-
sure, and the crude product was purified by flash chromatography
on silica gel (CHCl3/hexanes, 3:2) to afford desired compound 50
This work was supported by the National Science and Engineering
Council (NSERC) through a Discovery Grant. K. C. thanks the
Fonds de Recherche du Québec – Nature et Technologies for a PhD
scholarship. We are also grateful for professional support from the
Centre québécois sur les matériaux fonctionnels (CQMF) and the
Centre de recherche sur les matériaux avancés (CERMA).
[1] a) M. S. Wendland, S. C. Zimmerman, J. Am. Chem. Soc. 1999,
121, 1389–1390; b) L. G. Schultz, Y. Zhao, S. C. Zimmerman,
Angew. Chem. 2001, 113, 2016–2020; Angew. Chem. Int. Ed.
2001, 40, 1962–1966; c) S. C. Zimmerman, I. Zharov, M. S.
Wendland, N. A. Rakow, K. S. Suslick, J. Am. Chem. Soc.
2003, 125, 13504–13518; d) J. B. Beil, G. Lemcoff, S. C. Zim-
merman, J. Am. Chem. Soc. 2004, 126, 13576–13577; e) N. G.
Lemcoff, T. A. Spurlin, A. A. Gewirth, S. C. Zimmerman, J. B.
Beil, S. L. Elmer, H. G. Vandeveer, J. Am. Chem. Soc. 2004,
126, 11420–11421; f) S. L. Elmer, S. C. Zimmerman, J. Org.
Chem. 2004, 69, 7363–7366; g) J.-K. Lee, M. C. Kung, Y.-
W. H. H. Suh, H. H. Kung, Chem. Mater. 2008, 20, 373–375.
[2] a) J. Wu, L. Gherghel, M. D. Watson, J. Li, Z. Wang, C. D.
Simpson, U. Kolb, K. Müllen, Macromolecules 2003, 36, 7082–
7089; b) C. D. Simpson, G. Mattersteig, K. Martin, L.
Gherghel, R. E. Bauer, H. J. Räder, K. Müllen, J. Am. Chem.
Soc. 2004, 126, 3139–3147; c) J. Wu, W. Pisula, K. Müllen,
Chem. Rev. 2007, 107, 718–747; d) X. Y. Yang, X. Dou, A.
Rouhanipour, L. J. Zhi, H. J. Räder, K. Müllen, J. Am. Chem.
Soc. 2008, 130, 4216–4217; e) Y. Fogel, L. Zhi, A. Rouhanip-
our, D. Andrienko, H. J. Räder, K. Müllen, Macromolecules
2009, 42, 6878–6884; f) X. Yan, X. Cui, L.-s. Li, J. Am. Chem.
Soc. 2010, 132, 5944–5945; g) L. Dössel, L. Gherghel, X. Feng,
K. Müllen, Angew. Chem. 2011, 123, 2588–2591; Angew. Chem.
Int. Ed. 2011, 50, 2540–2543.
(0.039 g, 52% yield) as
a
yellow solid. 1H NMR (CDCl3,
400 MHz): δ = 8.34 (s, 2 H), 7.68–7-45 (br. m, 66 H), 7.40 (s, 4 H),
7.30 (s, 4 H), 7.21 (s, 4 H), 6.88 (d, J = 8.6 Hz, 8 H), 4.89 (t, J =
7.9 Hz, 4 H), 4.44 (br. s, 4 H), 3.97 (t, J = 6.4 Hz, 8 H), 2.67 (br.
s, 4 H), 2.57–2.47 (br. m, 32 H), 1.79 (m, 8 H), 1.56 (m, 8 H), 1.46
(m, 8 H), 1.41–1.17 (br. m, 90 H), 0.88 (br. m, 24 H) ppm. 13C
NMR (CDCl3, 100 MHz): δ = 159.3, 157.1, 143.6, 140.4, 139.5,
137.7, 137.3, 134.4, 133.2, 133.1, 132.8, 132.7, 132.2, 132.2, 131.9,
131.9, 131.8, 131.7, 131.7, 131.4, 131.4, 131.1, 126.9, 126.9, 126.8,
123.8, 123.8, 123.7, 123.1, 123.0, 123.0, 122.9, 122.9, 122.0, 121.9,
117.6, 115.0, 114.5, 94.9, 92.3, 91.0, 90.6, 90.4, 89.0, 89.0, 88.8,
87.8, 81.5, 74.3, 68.1, 35.5, 35.5, 34.4, 31.9, 31.8, 31.2, 31.1, 31.1,
29.7, 29.6, 29.7, 29.5, 29.4, 29.4, 29.3, 29.2, 26.0, 22.7, 22.7, 20.6,
[3] F. Otis, C. Racine-Berthiaume, N. Voyer, J. Am. Chem. Soc.
2011, 133, 6481–6483.
20.1, 14.1 ppm. FTIR (ATR): ν = 2921 (s), 2852 (m), 1729 (w),
˜
[4] a) T. Yamaguchi, N. Ishii, K. Tashiro, T. Aida, J. Am. Chem.
Soc. 2003, 125, 13934–13935; b) T. Kiba, H. Suzuki, K. Hosok-
awa, H. Kobayashi, S. Baba, T. Kakuchi, S.-i. Sato, J. Phys.
Chem. B 2009, 113, 11560–11563; c) M. Fathalla, A. Neub-
erger, S.-C. Li, R. Schmehl, U. Diebold, J. Jayawickramarajah,
J. Am. Chem. Soc. 2010, 132, 9966–9967.
[5] a) R. B. Prince, T. Okada, J. S. Moore, Angew. Chem. 1999,
111, 245–249; Angew. Chem. Int. Ed. 1999, 38, 233–236; b)
R. B. Prince, S. A. Barnes, J. S. Moore, J. Am. Chem. Soc. 2000,
122, 2758–2762; c) A. Tanatani, M. J. Mio, J. S. Moore, J. Am.
Chem. Soc. 2001, 123, 1792–1793; d) C. Tan, M. R. Pinto,
M. E. Kose, I. Ghiviriga, K. S. Schanze, Adv. Mater. 2004, 16,
1208–1212; e) V. G. Organo, D. M. Rudkevich, Chem. Com-
mun. 2007, 3891–3899.
1581 (m), 1509 (s), 1247 (m), 821 (m) cm–1. HRMS data for 50
could not be obtained in either ESI or APPI mode.
Compound 51: A 15 mL round heavy-wall pressure vessel equipped
with a magnetic stir bar was charged with compound 50 (0.030 g,
0.00746 mmol), THF (5 mL), LiOH 10% (0.02 mL), and NaOH
10% in MeOH (0.07 mL). The reaction mixture was stirred at
80 °C for 48 h, cooled to room temperature and acidified to pH =
6. The organic layer was washed with water. The aqueous layer was
extracted three times with CHCl3. The organic layers were com-
bined, dried with MgSO4 and filtered. The solvent was removed
under reduced pressure, and the crude product was purified by
flash chromatography on silica gel (CHCl3) to afford desired com-
[6] M. A. B. Block, C. Kaiser, A. Khan, S. Hecht, Top. Curr.
Chem. 2005, 245, 89–150.
1
pound 51 (0.014 g, 90%) as a pale yellow solid. H NMR (CDCl3,
[7] S. Dawn, M. B. Dewal, D. Sobransingh, M. C. Paderes, A. C.
Wibowo, M. D. Smith, J. A. Krause, P. J. Pellechia, L. S. Shim-
izu, J. Am. Chem. Soc. 2011, 133, 7025–7032.
[8] a) M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee,
N. Khazanovich, Nature 1993, 366, 324–327; b) D. Seebach,
J. L. Matthews, A. Meden, T. Wessels, C. Baerlocher, L. B.
McCusker, Helv. Chim. Acta 1997, 80, 173–182; c) J. D. Hart-
gerink, T. D. Clark, M. R. Ghadiri, Chem. Eur. J. 1998, 4,
1367–1372; d) D. Ranganathan, M. P. Samant, I. L. Karle, J.
Am. Chem. Soc. 2001, 123, 5619–5624.
400 MHz): δ = 7.57 (s, 4 H), 7.49 (s, 4 H), 7.46 (s, 4 H), 7.39 (s, 4
H), 7.34 (s, 4 H), 7.30 (s, 4 H), 4.45 (t, J = 5.7 Hz, 4 H), 3.98 (m,
4 H), 2.60 (t, J = 7.5 Hz, 8 H), 2.53 (s, 12 H), 2.49 (s, 12 H), 2.13
(m, 4 H), 1.79 (m, 2 H), 1.63 (m, 8 H), 1.38–1.22 (br. m, 58 H),
0.89 (t, J = 6.3 Hz, 12 H) ppm. 13C NMR (CDCl3, 100 MHz): δ =
143.8, 137.7, 137.4, 132.9, 132.9, 123.9, 123.1, 123.0, 122.0, 117.4,
93.9, 92.4, 90.9, 89.0, 81.3, 74.2, 61.3, 35.7, 34.5, 33.0, 32.0, 32.0,
31.4, 31.3, 29.6, 29.4, 29.3, 26.2, 22.8, 20.3, 20.3, 14.3 ppm. FTIR
(ATR): ν = 2923 (s), 2854 (m), 1581 (m), 1494 (m), 1455 (m), 1380
˜
14
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0