Y. Masuyama et al. / Tetrahedron Letters 44 (2003) 2845–2847
2847
Scheme 3.
Scheme 4.
A.; Kurusu, Y. Chem. Commun. 1998, 315; (i) Ito, A.;
Kishida, M.; Kurusu, Y.; Masuyama, Y. J. Org. Chem.
2000, 65, 494.
4. (a) Masuyama, Y. J. Synth. Org. Chem., Jpn. 1992, 50,
202; (b) Masuyama, Y. In Advances in Metal-Organic
Chemistry; Liebeskind, L. S., Ed.; JAI Press: Greenwich,
CT, 1994; Vol. 3, p. 255; (c) Masuyama, Y.; Ito, T.;
Tachi, K.; Ito, A.; Kurusu, Y. Chem. Commun. 1999,
1261.
5. Matsubara, S.; Wakamatsu, K.; Morizawa, Y.; Tsub-
oniwa, N.; Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jpn.
1985, 58, 1196.
6. (a) Masuyama, Y.; Hayakawa, A.; Kurusu, Y. J. Chem.
Soc., Chem. Commun. 1992, 1102; (b) Masuyama, Y.;
Hayakawa, A.; Kishida, M.; Kurusu, Y. Inorg. Chim.
Acta 1994, 220, 155.
7. For a-regioselective carbonyl allylations, see: (a)
Yamamoto, Y.; Maruyama, K. J. Org. Chem. 1983, 48,
1564; (b) Kanagawa, A.; Nishiyama, Y.; Ishii, Y. J. Org.
Chem. 1992, 57, 6988; (c) Yanagisawa, A.; Habaue, S.;
Yasue, K.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116,
6130.
8. For in situ preparation of allylic tins in nonpolar solvents
except for the reaction of allylic compounds such as
allylic halides, alcohols or esters with tin(II) halides, see:
(a) Ref. 2a; (b) Masuyama, Y.; Saeki, K.; Horiguchi, S.;
Kurusu, Y. Synlett 2001, 1802.
Scheme 5. A plausible mechanism.
References
9. For the reduction of Ti(IV) to Ti(III) with TBAI and its
application to pinacol coupling, see: Tsuritani, T.; Ito, S.;
Shinokubo, H.; Oshima, K. J. Org. Chem. 2000, 65, 5066
and references cited therein.
10. The structure of all products in the carbonyl allylation
with SnCl4–TBAI was confirmed by direct comparison of
IR and NMR spectra with authentic samples prepared
with SnCl2. See: Takahara, J. P.; Masuyama, Y.; Kurusu,
Y. J. Am. Chem. Soc. 1992, 114, 2577.
11. 2-Butenyl mesylate could not be used to the carbonyl
allylation with SnCl4–TBAI because of the failure of
preparing 2-butenyl mesylate from 2-buten-1-ol and
methanesulfonyl chloride under various conditions.
12. TBAI3 was identified by direct comparison of UV–vis, 1H
NMR, and 13C NMR spectra with those of an authentic
sample prepared from tetrabutylammonium iodide and
iodine, similarly to Ref. 9.
1. For a review on carbonyl allylations with allylic metals,
see: Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.
2. For reviews on carbonyl allylations with allylic tin com-
pounds, see: (a) Tagliavini, G. Rev. Si Ge Sn Pb 1985, 8,
237; (b) Yamamoto, Y. Acc. Chem. Res. 1987, 20, 243; (c)
Marshall, J. A. Chem. Rev. 1996, 96, 31.
3. (a) Mukaiyama, T.; Harada, T.; Shoda, S. Chem. Lett.
1980, 1507; (b) Gambaro, A.; Peruzzo, V.; Plazzogna, G.;
Tagliavini, G. J. Organomet. Chem. 1980, 197, 45; (c)
Auge, J.; David, S. Tetrahedron Lett. 1983, 24, 4009; (d)
Uneyama, K.; Kamaki, N.; Moriya, A.; Torii, S. J. Org.
Chem. 1985, 50, 5396; (e) Molander, G. A.; Shubert, D.
C. J. Am. Chem. Soc. 1986, 108, 4683; (f) Imai, T.;
Nishida, S. J. Chem. Soc., Chem. Commun. 1994, 277; (g)
Kundu, A.; Prabhakar, S.; Vairamani, M.; Roy, S.
Organometallics 1997, 16, 4796; (h) Masuyama, Y.; Ito,