Organic Letters
Letter
Walton, J. C. Angew. Chem., Int. Ed. 1998, 37, 3072. (d) Ollivier, C.;
Renaud, P. Chem. Rev. 2001, 101, 3415. (e) Studer, A.; Amrein, S.
Synthesis 2002, 835. (f) Gilbert, B. C.; Parsons, A. F. J. Chem. Soc.,
Perkin Trans. 2 2002, 367. (g) Weiss, M. E.; Kreis, L. M.; Lauber, A.;
Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 11125. (h) Murphy, J.
A.; Khan, T. A.; Zhou, S. Z.; Thomson, D. W.; Mahesh, M. Angew.
fold can be difficult when R = CO2Me, CN, CHO due to the
electrophilic nature of the radical intermediate 5 (Scheme
1).15e,16a Much to our delight, indoles 2g−i were transformed
to the desired products 3g−i in yields ranging from 92% to
95% yields (Table 2, entries 6−8). From these results, one
could imagine that the oxidation potential of the [Au−Au]3+ is
high enough to oxidize the radical intermediate 5 to the
corresponding carbocation leading to indole 3. As expected, C3
electron-rich indoles 2j and 2k were transformed into the
desired products 3j and 3k in 86% and 98% yields, respectively
(Table 2, entries 9 and 10). Radical cyclization of aryl bromides
2l and 2m afforded cyclized indoles 3l (72%) and 3m (48%)
along with a significant amount of dehalogenated products 10l
(24%) and 10m (48%). In an attempt to obtain 7-azaindole 3n,
only starting material 2n was isolated, suggesting that pyridine
moiety poisons the gold catalyst 1 (Table 2, entry 13).
In summary, we have described a light-mediated process for
the generation of organic free radicals with unactivated
bromoalkanes/arenes, resulting in the efficient functionalization
of substituted indoles. This methodology allows for simple
access of carbon-centered radicals not attained with previous
photoredox catalysts, and without the use of toxic and/or harsh
conditions. Further mechanistic studies along with its
application in total synthesis of natural products will be
reported in due course.
Chem., Int. Ed. 2005, 44, 1356. (i) Ekomio, A.; Lefev
Fensterbank, L.; Lacote, E.; Malacria, M.; Ollivier, C.; Jutand, A.
Angew. Chem., Int. Ed. 2012, 51, 6942.
̀
re, G.;
̂
(3) (a) Cossy, J.; Ranaivosata, J.-L.; Bellosta, V. Tetrahedron Lett.
1994, 35, 8161. (b) Cossy, J.; Ranaivosata, J.-L.; Bellosta, V.; Gille, B.
Tetrahedron 2001, 57, 5173. For recent reviews, see: (c) Fagnoni, M.;
Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725.
(d) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
(e) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40,
102. (f) Teply, F. Collect. Czech. Chem. Commun. 2011, 76, 859−917.
́
(g) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687. (h) Xuan, J.; Xiao,
W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828. (i) Tucker, J. W.;
Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617. (j) Prier, C. K.;
Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(k) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985.
(4) For selected examples, see: (a) Gray, H. B.; Maverick, A. W.
Science 1981, 214, 1201. (b) Meyer, T. J. Acc. Chem. Res. 1989, 22, 163.
(c) Bard, A. J.; Fox, M. A. Acc. Chem. Res. 1995, 28, 141. (d) O’Regan,
B.; Gratzel, M. A. Nature 1991, 353, 737−740. (e) Wang, P.;
̈
Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.;
Gratzel, M. Nat. Mater. 2003, 2, 402−407.
̈
(5) (a) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159.
(b) Juris, A.; Balzani, V.; F. Barigelletti, F.; Campagna, S.; Belser, P.;
von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85.
ASSOCIATED CONTENT
■
(6) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
(7) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc.
2009, 131, 10875.
(8) Shih, H.-W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2010, 132, 13600.
(9) (a) Nguyen, J. D.; D’Amato, E. M.; Narayama, J. M. R.;
Stephenson, C. R. J. Nat. Chem. 2012, 4, 854. (b) Kim, H.; Lee, C.
Angew. Chem., Int. Ed. 2012, 51, 12303.
(10) (a) Revol, G.; McCallum, T.; Morin, M.; Gagosz, F.; Barriault,
L. Angew. Chem., Int. Ed. 2013, 52, 13342. (b) McCallum, T.; Morin,
M.; Slavko, E.; Barriault, L. Eur. J. Org. Chem. 2015, 81.
(11) (a) Kwong, H.-L.; Wing-Wah Yam, V.; Dan Li, D.; Che, C.-M. J.
Chem. Soc., Dalton Trans. 1992, 3325. (b) Che, C.-M.; Kwong, H.-L.;
Wing-Wah Yam, V.; Choc, K.-C. J. Chem. Soc., Chem. Commun. 1989,
885.
S
* Supporting Information
1
Experimental procedures and H and 13C NMR spectra for all
new compounds. The Supporting Information is available free
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(12) Xie, J.; Zhang, T.; Mehrkens, N.; Rudolph, M.; Hashmi, A. S. K.
Angew. Chem., Int. Ed. 2015, 54, 6046.
(13) Artis, D. R.; Cho, I. S.; Jaime-Figueroa, S. J. Org. Chem. 1994, 59,
2456.
■
We thank the Natural Sciences and Engineering Research
Council (for Accelerator, Discovery and CREATE grants to
L.B.) and the University of Ottawa (for a University Research
Chair to L.B.) for support of this research. Acknowledgement is
also made to the donors of the American Chemical Society
Petroleum Research Fund for support of this research. T.M.
and S.J.K. thank NSERC (CREATE on medicinal chemistry
and biopharmaceutical development). A.C. thanks the Uni-
versity of Ottawa for a Vision 2020 postdoctoral scholarship.
(14) For reviews of the use of Mn(OAc)3 in organic synthesis, see:
(a) Snider, B. B. Chem. Rev. 1996, 96, 339. (b) Snider, B. B.
Manganese(III)-Based Oxidative Free-Radical Cyclizations. In Tran-
sition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.;
Wiley-VCH Verlag: Weinheim, 2004; Vol. 1, pp 483−490.
(15) (a) Artis, D. R.; Cho, I.-S.; Muchowski, J. M. Can. J. Chem. 1992,
70, 1838. (b) Baciocchi, E.; Muraglia, E. J. Org. Chem. 1993, 58, 7610.
(c) Chuang, C. P.; Wang, S. F. Tetrahedron Lett. 1994, 35, 1283.
(d) Tsai, A.-I.; Lin, C.-H.; Chuang, C. P. Heterocycles 2005, 65, 2381.
(e) Magolan, J.; Kerr, M. A. Org. Lett. 2006, 8, 4561. (f) Magolan, J.;
Carson, C. A.; Kerr, M. A. Org. Lett. 2008, 10, 1437.
(16) (a) Tucker, J. W.; Narayanam, J. M. R.; Krabbe, S. W.;
Stephenson, C. R. J. Org. Lett. 2009, 12, 368. (b) Tucker, J. W.;
Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Org. Lett.
2010, 12, 368.
REFERENCES
■
(1) (a) Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.;
Wiley-VCH: Weinheim, 2001. (b) Curran, D. P. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Semmelhack, M. F., Eds.;
Pergamon, Oxford, 1991; Vol. 4 pp 715. (c) Topics in Current
Chemistry, Radicals in Synthesis I and II; Gansuer, A., Ed.; Springer:
Berlin, 2006; Vol. 263. (d) Encyclopedia of Radicals in Chemistry,
Biology and Materials; Chatgilialoglu, C., Studer, A., Eds.; Wiley:
Chichester, 2012; Vols. 1 and 2.
(2) For examples of alternatives to tin hydride mediators, see:
(a) Quiclet-Sire, B.; Zard, S. Z. Pure Appl. Chem. 2011, 83, 519.
(b) Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188. (c) Baguley, P. A.;
C
Org. Lett. XXXX, XXX, XXX−XXX