Page 3 of 3
ChemComm
5
See, for example, D. Rajagopal, R. Narayanan and S. Swaminathan,
respectively activated by surface hydroxyls and the secondary
Tetrahedron Lett., 2001, 42, 4887; A. Córdova, I. Ibrahem, J. Casas,
H. Sundén, M. Engqvist and E. Reyes, Chem. Eur. J., 2005, 11,
4772; L. Deiana, G. Zhao, P. Dziedzic, R. Rios, J. Vesely, J.
Ekström and A. Córdova, Tetrahedron Lett., 2010, 51, 234; Q. Gu,
L. Jiang, K. Yuan, L. Zhang and X. Wu, Synth. Comm., 2008, 38,
4198; N. Chowdari, D. Ramachary and C. Barbas, III, Org. Lett.,
2003, 5, 1685; A. Córdova and C. Barbas, III, Tetrahedron Lett.,
2003, 44, 1923; A. Córdova, Chem. Eur. J., 2004, 10, 1987; Y. An,
Q. Qin, C. Wang and J. Tao, Chin. J. Chem., 2011, 29, 1511; Y.
Wen, Y. Xiong, L. Chang, J. Huang, X. Liu and X. Feng, J. Org.
Chem., 2007, 72, 7715; Y. Liu, H. Liu, W. Du, L. Yue and Y. Chen,
Chem. Eur. J., 2008, 14, 9873.
amine of pyrrolidine to form an imine intermediate. The αꢀ
proton of nitromethane is abstracted by the primary amine
(SBAꢀpyꢀpri), secondary amine (SBAꢀpyꢀsiꢀdiph and SBAꢀpyꢀ
si), or tertiary amine (SBAꢀpyꢀter) with the assistance of
surface hydroxyl sites. The deprotonated nitromethane
nucleophilically attacks the imine intermediate to result in the
nitrostyrene which directly participates in Michael reaction. In
the Michael reaction, the cyclohexanone is activated by the
10 secondary amine of pyrrolidine to form an enamine
intermediate. The surface silanols would orientate the nitro
group of nitrostyrene through hydrogen bonds so that the
enamine acts as a necleophile and attacked the nitrostyrene
from different faces. Because of the hinderance effect of the
15 mesoporous channel on the re attack on anti-enamine and the
interaction between surface silanols and nitrostyrene, the (2R,
1’S) isomer is afforded as major product (Fig. S4).
55
60
65
70
75
80
85
5
6
7
M. Climent, A. Corma and S. Iborra, Chem. Rev., 2011, 111, 1072; E.
L. Margelefsky, R. Zeidan and M. E. Davis, Chem. Soc. Rev., 2008,
37, 1118.
See, for example, B. Voit. Angew. Chem. Int. Ed., 2006, 45, 4238; F.
Gelman, J. Blum and D. Avnir, Angew. Chem. Int. Ed., 2001, 40,
3647; K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani and
K. Kaneda, J. Am. Chem. Soc., 2005, 127, 9674; B. Helms, S. J.
Guillaudeu, Y. Xie, M. McMurdo, C. Hawker and J. Fréchet, Angew.
Chem. Int. Ed., 2005, 44, 6384; N. Phan, C. Gill, J. Nguyen, Z.
Zhang and C. Jones, Angew. Chem. Int. Ed., 2006, 45, 2209; A.
Pilling, J. Boehmer and D. Dixon, Angew. Chem. Int. Ed., 2007, 46,
5428; Y. Huang, B. Trewyn, H. Chen and V. Lin, New J. Chem.,
2008, 32, 1311.
S. Shylesh, A. Wagener, A. Seifert, S. Ernst and W. Thiel, Angew.
Chem. Int. Ed., 2010, 49, 184.
K. Motokura, M. Tada and Y. Iwasawa, Angew. Chem. Int. Ed., 2008,
47, 9230; K. Motokura, M. Tada and Y. Iwasawa. J. Am. Chem.
Soc., 2009, 131, 7944.
The reusability of the heterogeneous catalyst designed here
was also investigated using SBAꢀpyꢀter as an example. SBAꢀ
20 pyꢀter was recycled by simple filtration and reꢀused for
catalytic runs (Fig. 1). 73% yield, and 93% ee for syn-isomer
and 89% ee for anti-isomer are preserved in three recycle runs.
8
9
10 S. Anwar, P. Lee, T. Chou, C. Chang and K. Chen, Tetrahedron,
2011, 67, 1171; I. Sanchez, M. Larraza, I. Rojas, F. Brena and H.
Flores, Heterocycles, 1985, 23, 3033; C. Fugantic, In’ the
Alkaloides, Vol. 15 (Ed: R. H. F. Manske), Academic Press: New
York, NY, 1975, pp. 83; M. Sainsbury, In Rodd’s Chemistry of
Carbon Compounds, 2nd ed., Vol. 4 (Ed: S. Coffey), Elsevier
Scientific: Amsterdam, 1977, Part B, Chapter 10.
90 11 F. Tao, Y. Wang, J. Su, Y. Li, X. Cai and X. Luo, Helvetica Chimica
Acta., 2011, 94, 178; A. Kornienko and A. Evidente, Chem. Rev.,
2008, 108, 1982; O. Arrigoni, R. ArrigoniꢀLiso, G. Calabrese,
Nature, 1975, 256, 513; O. Arrigoni, R. ArrigoniꢀLiso and G.
Calabrese, Science, 1976, 194, 332.
Fig.1 The recycle of SBAꢀpyꢀter in asymmetric HenryꢀMichael oneꢀpot
25
reaction.
In summary, this work has demonstrated the asymmetric
HenryꢀMichael oneꢀpot reaction on designed heterogeneous
catalysts with inherent achiral hydroxyls of support surface as
acid sites and grafted chiral amines as base sites. The final
95 12 Q. Wei, Z. Nie, Y. Hao, Z. Chen, J. Zou, W. Wang, Mater. Lett.,
2005, 59, 3611.
13 R. Palkovits, C. Yang, S. Olejnik and F. Schüth, J. Catal., 2006, 243,
93.
30 product are afforded in up to 85% yield and 99% ee.
14 N. García, E. Benito, J. Guzmán, P. Tiemblo, V. Morales and R.
Notes and references
100
García, Micropo. Mesopo. Mater., 2007, 106, 129.
15 See, for example, H. Gotoh, D. Okamura, H. Ishikawa and Y.
Hayashi, Org. Lett., 2009, 11, 4056; H. Gotoh, H. Ishikawa and Y.
Hayashi, Org. Lett., 2007, 9, 5307; Y. Hayashi, M. Toyoshima, H.
Gotoh and H. Ishikawa, Org. Lett., 2009, 11, 45; P. McGarraugh
and S. BrennerꢀMoyer, Org. Lett., 2011, 13, 6460.
1
See, for example, D. Enders, M. Hüttl, C. Grondal and G. Raabe,
Nature, 2006, 441, 861; K. Nicolaou, T. Montagnon and S. Snyder,
Chem. Commun., 2003, 551; J. Wasilke, S. Obrey, R. Baker and G.
Bazan, Chem. Rev., 2005, 105, 1001; D. Ramón and M. Yus,
Angew. Chem. Int. Ed., 2005, 44, 1602; L. Tietze, Chem. Rev., 1996,
96, 115; H. Guo and J. Ma, Angew. Chem. Int. Ed., 2006, 45, 354.
See, for example, J. Schrittwieser, I. Lavandera, B. Seisser, B.
Mautner and W. Kroutil, Eur. J. Org. Chem., 2009, 2293; H.
Takahashi, Y. Liu and H. Liu, J. Am. Chem. Soc., 2006, 128, 1432;
H. Yu and X. Chen, Org. Lett., 2006, 8, 2393.
See, for example, P. Evans and J. Robinson, J. Am. Chem. Soc., 2001,
123, 4609; S. Ma, N. Jiao, Z. Zheng, Z. Ma, Z. Lu, L. Ye, Y. Deng
and G. Chen, Org. Lett., 2004, 6, 2193; K. Tanaka, T. Osaka, K.
Noguchi and M. Hirano, Org. Lett., 2007, 9, 1307.
See, for example, D. Balan and H. Adolfsson, Tetrahedron Lett.,
2003, 44, 2521; M. Marigo, S. Bertelsen, A. Landa and K.
Jørgensen, J. Am. Chem. Soc., 2006, 128, 5475; Y. Wen, Y. Xiong,
L. Chang, J. Huang, X. Liu and X. Feng, J. Org. Chem., 2007, 72,
7715; H. Ishikawa, S. Sawano, Y. Yasui, Y. Shibata and Y. Hayashi,
Angew. Chem. Int. Ed., 2011, 50, 3774.
35
40
45
50
105
110
115
120
16 See, for example, A. Cobb, D. Longbottom, D. Shaw and S. Ley,
Chem. Commun., 2004, 1808; Y. Xu and A. Córdova, Chem.
Commun., 2006, 460; S. Tsogoeva and S. Wei, Chem. Commun.,
2006, 1451; D. Xu, H. Yue, S. Luo, A. Xia, S. Zhang and Z. Xu,
Org. Biomol. Chem., 2008, 6, 2054; Z. Zeng, P. Luo, Y. Jiang, Y.
Liu, G. Tang, P. Xu, Y. Zhao and G. Blackburn, Org. Biomol.
Chem., 2011, 9, 6973; X. Cao, G. Wang, R. Zhang, Y. Wei, W.
Wang, H. Sun and L. Chen, Org. Biomol. Chem., 2011, 9, 6487.
17 See, for example, T. Ishii, S. Fujioka, Y. Sekiguchi and H. Kotsuki, J.
Am. Chem. Soc., 2004, 126, 9558; E. Alza, X. Cambeiro, C. Jimeno
and M. Pericàs, Org. Lett., 2007, 9, 3717; C. Kokotos, D. Limnios,
D. Triggidou, M. Trifonidou and G. Kokotos; Org. Biomol. Chem.,
2011, 9, 3386; S. Pansare and K. Pandya, J. Am. Chem. Soc., 2006,
128, 9624; N. Mase, K. Watanabe, H. Yoda, K. Takabe, F. Tanaka
and C. Barbas III, J. Am. Chem. Soc., 2006, 128, 4966; J. Chen, Y.
Cao, Y. Zou, F. Tan, L. Fu, X. Zhu and W. Xiao, Org. Biomol.
Chem., 2010, 8, 1275.
2
3
4
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3