SCHEME 1. Synthesis of Halohydrins
Ionic Liquid as Reagent. A Green
Procedure for the Regioselective
Conversion of Epoxides to
Vicinal-Halohydrins Using [AcMIm]X
under Catalyst- and Solvent-Free
Conditions
Brindaban C. Ranu* and Subhash Banerjee
Department of Organic Chemistry,
Indian Association for the Cultivation of Science,
Jadavpur, Kolkata 700 032, India
Li2CuCl4,13 Lix-TiX4,14 Lix-[Bmim]PF615 are reported to
be more convenient and efficient. However, the presence
of strong Lewis acid and protic acid in these Lix combined
reagent systems often leads to low yields of halohydrins.
As there is a continued interest in the selective ring
opening of epoxides to give halohydrins a milder, more
efficient, and environmentally friendly methodology would
be highly desirable.
Received January 15, 2005
The ionic liquids have been the subject of considerable
current interest as environmentally benign reaction
media in organic synthesis because of their unique
properties of nonvolatility, nonflammability, and recy-
clability, among others.16,17 However, the ability of ionic
liquid as a clean catalyst18 and reagent19 has not been
explored to any great extent although it is of much
importance in the context of green synthesis. As a part
of our continuous drive20 to avoid organic solvent, toxic
catalysts, and reagents, we have initiated a new program
to explore the use of ionic liquid as efficient catalyst,
reagent, as well as reaction media for useful organic
transformations. We report here a novel use of an ionic
liquid, acylmethylimidazolium halide ([AcMIm]X),21 for
the cleavage of epoxides to halohydrins without require-
ment of any other catalyst and solvent (Scheme 1). Thus,
[AcMIm]X acts as reagent as well as solvent for this
reaction.
A variety of structurally diverse epoxides undergo facile
cleavages by ionic liquid, [AcMIm]X without any catalyst
and solvent to produce the corresponding vicinal halohydrins
in high yields. The cleavages are considerably fast and highly
regioselective.
The vicinal halohyrins are very useful synthetic inter-
mediates and have found wide applications in organic
transformations and in the synthesis of marine natural
products.1,2 The conventional reagents for epoxide ring
opening to halohydrins are hydrogen halides and hypo-
halite-water.3 However, these procedures are associated
with the disadvantages of intolerance to acid-sensitive
moieties and byproduct formation.4 A variety of other
reagents5 such as ammonium halides in the presence of
metal salts,5a halosilanes,5b haloboranes,5c,d and particu-
larly halides of different elements such as P,6 Al,7 Fe,8
Cu,,9 Ni,10 Sn,11 and Li12 are also available for this
transformation. Among these reagents lithium halides
in combination with various Lewis acids such as
The experimental procedure is very simple. A mixture
of epoxide and [AcMIm]X was heated at 65 °C with
stirring for 1.5-2.0 h (TLC). The reaction mixture was
then quenched with brine and extracted with ether.
(13) Ciaccio, J. A.; Heller, E.; Talbot, A. Synlett 1991, 248.
(14) Shimizu, M.; Yoshida, A.; Fujisawa, T. Synlett 1992, 204.
(15) Yadav, J. S.; Reddy, B. V. S.; Reddy, Ch. S.; Rajasekhar, K.
Chem. Lett. 2004, 33, 476.
(1) Bartlett, P. A. In Asymmetric Synthesis; Morrison, J. D., Ed.;
Academic Press: New York, 1984; Vol. 3, p 411.
(2) Erickson, R. E. In Marine Natural Products; Scheuer, P. J., Ed.;
Academic Press: New York, 1986; Vol. 5, p 131.
(16) (a) Welton, T. Chem. Rev. 1999, 99, 2071. (b) Wasserscheid, P.;
Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3773. (c) Sheldon, R. Chem.
Commun. 2001, 2399. (d) Wilkes, J. S. Green Chem. 2002, 4, 73.
(17) (a) Yao, Q. Org. Lett. 2002, 4, 2197. (b) Zerth, H. M.; Leonard,
N. M.; Mohan, R. S. Org. Lett. 2003, 5, 55. (c) Su, C.; Chen, Z.-C.; Zheng,
Q.-G. Synthesis 2003, 555. (d) Rajagopal, R.; Jarikote, D. V.; Lahoti,
R. J.; Daniel, T.; Srinivasan, K. V. Tetrahedron Lett. 2003, 44, 1815.
(e) Kumar, A.; Pawar, S. S. J. Org. Chem. 2004, 69, 1419.
(18) (a) Harjani, J. R.; Nara, S. J.; Salunkhe, M. M. Tetrahedron
Lett. 2002, 43, 1127. (b) Namboodiri, V. V.; Varma, R. S. Chem.
Commun. 2002, 342. (c) Sun, W.; Xia, C.-G.; Wang, H.-W. Tetrahedron
Lett. 2003, 44, 2409. (d) Qiao, K.; Yakoyama, C. Chem. Lett. 2004, 33,
472.
(19) (a) Le, Z -G.; Chen, Z.-C.; Hu, Y.; Zheng, Q.-G. Synthesis 2004,
2809. (b) Earle, M. J.; Katdare, S. P.; Seddon, K. R. Org. Lett. 2004, 6,
707.
(20) (a) Ranu, B. C.; Hajra, A.; Dey, S. S.; Jana, U. Tetrahedron 2003,
5, 44. (b) Ranu, B. C.; Das, A.; Samanta, S. J. Chem. Soc., Perkin Trans.
1 2002, 1520. (c) Ranu, B. C.; Dey, S. S. Tetrahedron Lett. 2003, 44,
2865. (d) Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedron 2003, 59, 2417.
(e) Ranu, B. C.; Dey, S. S. Tetrahedron 2004, 60, 4183.
(21) Li, D.; Shi, F.; Peng, J.; Guo, S.; Deng, Y. J. Org. Chem. 2004,
69, 3582.
(3) Smith, J. G.; Fieser, M. Fieser and Fieser’s Reagent for Organic
Synthesis; John Wiley and Sons: New York, 1990; Vols 1-12.
(4) Stewart, C. A.; Vanderwerf, C. A. J. Am. Chem. Soc. 1954, 76,
1259. Owen, L. N.; Saharia, G. S. J. Chem. Soc. 1953, 2582.
(5) (a) Chini, M.; Crotti, P.; Gardelli, C.; Macchia, F. Tetrahedron
1992, 48, 3805. (b) Andrews, G. C.; Crawford, T. C.; Contilio, L. G., Jr.
Tetrahedron Lett. 1981, 22, 3803. (c) Bhatt, M. V.; Kulkarni, S. U.
Synthesis 1983, 249. (d) Guindon, Y.; Therien, M.; Girard, Y.; Yoakim,
C. J. Org. Chem. 1987, 52, 1680.
(6) Palumbo, G.; Ferreri, C.; Caputo, R. Tetrahedron Lett. 1983, 24,
1307.
(7) Weidmann, B.; Seebach, D. Helv. Chim. Acta 1980, 63, 2451.
(8) Kagan, J.; Firth, B. E.; Shih, N. Y.; Boyanjian, C. G. J. Org.
Chem. 1977, 42, 343.
(9) Ciaccio, J. A.; Addess, K. J.; Bell, T. W. Tetrahedron Lett. 1986,
27, 3697.
(10) Dave, R. D.; Molinski, T. F.; Turner, J. V. Tetrahedron Lett.
1984, 25, 2061.
(11) Einhorn, C.; Luche, J.-L. Chem. Commun. 1986, 1368.
(12) Bajwa, J. S.; Anderson, R. C. Tetrahedron Lett. 1991, 32, 3021.
10.1021/jo0500885 CCC: $30.25 © 2005 American Chemical Society
Published on Web 04/12/2005
J. Org. Chem. 2005, 70, 4517-4519
4517