5858
P. R. Sultane et al. / Tetrahedron Letters 53 (2012) 5856–5858
OH
Acknowledgements
O
H
N
H2, Pd/C, MeOH
then K2CO3
H
OMe
P.R.S. thanks CSIR, New Delhi for Senior Research Fellowship.
Authors greatly acknowledge the IISER Pune for the financial sup-
port to carry out this research work.
N
50 °C, 4 h, 80%
Cbz
OH
O
15
9
Supplementary data
O
H
H
COCl2, DMSO
CH2Cl2, -78 °C
PPh3CH3I
n-BuLi
Supplementary data associated with this article can be found, in
N
N
0 °C-rt, 70%
99%
O
O
12
13
References and notes
Ref.12i,j
Ref.12d
1. Michael, J. P. Nat. Prod. Rep. 2008, 25, 139–165.
OH
2. (a) Michael, J. P. Beilstein J. Org. Chem. 2007, 3, 27; (b) Pyne, S. G. Curr. Org. Synth.
2005, 2, 39–57; (c) Asano, N. Curr. Top. Med. Chem. 2003, 3, 471–484; (d)
Watson, A. A.; Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J.
Phytochemistry 2001, 56, 265–295; (e) Asano, N.; Nash, R. J.; Molyneux, R. J.;
Fleet, G. W. J. Tetrahedron: Asymmetry 2000, 11, 1645–1680; (f) Elbein, A. D.;
Molyneux, R. J. In Iminosugars as Glycosidase Inhibitors; Stutz, A. E., Ed.; Wiley-
VCH: Weinheim, Germany, 1999; p 216; (g) Elbein, A. D.; Molyneux, R. J. In
Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley-
Interscience: New York, 1987; Vol. 5, p 1. Chapter 1.
H
N
4
Pumiliotoxin 251D
3. (a) Buffat, M. G. P. Tetrahedron 2004, 60, 1701–1729; (b) Maryanoff, B. E.;
Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. Chem. Rev. 2004, 104,
1431–1628.
Scheme 3. Formal synthesis of pumiliotoxin 251D.
4. (a) Baxter, E. W.; Reitz, A. B. J. Org. Chem. 1994, 59, 3175–3185; (b) Sinnott, L. M.
Chem. Rev. 1990, 90, 1171–1202.
Encouraged by this we planned to utilize effectively olefin 9 for
the synthesis of the compounds 12 and 13 (Scheme 3). Compound
9 on treatment with Pd/C, H2 in MeOH, followed by the addition of
K2CO3 gave the corresponding alcohol 15 in 80% yield. It is striking
to note that the sequence of transformations viz. deprotection of
benzyloxycarbonyl (Cbz) group, reduction of double bond, and
facile cyclization takes place in one pot. Subsequently, alcohol 15
upon Swern oxidation, gave indolizidinedione 12 in almost quanti-
tative yield of 99%. Thus compound 12 was obtained in an overall
yield of 42% in 6 steps. Spectral data for compound 12 were in close
5. (a) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In Alkaloids; Cordell, G. A., Ed.;
Academic Press: San Diego, 1993; Vol. 43, p 185; (b) Daly, J. W.; Spande, T. F. In
Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; John Wiley
and Sons: New York, 1986; Vol. 4, p 1; (c) Tokuyama, T.; Nishimori, N.;
Shimada, A.; Edwards, M. W.; Daly, J. W. Tetrahedron 1987, 43, 643–652.
6. Vandendriesschea, T.; Abdel-Mottaleba, Y.; Maertensa, C.; Cuypersa, E.;
Sudaub, A.; Nubbemeyer, U.; Mebsc, D.; Tytgata, J. Toxicon 2008, 51, 334–344.
7. (a) Chan, T.-H.; St-Denis, Y. J. Org. Chem. 1992, 57, 3078–3085; (b) Martin, S. F.;
Chen, H.-J.; Yang, C.-P. J. Org. Chem. 1993, 58, 2867–2873; (c) Martin, S. F.; Chen,
H.-J.; Lynch, V. M. J. Org. Chem. 1995, 60, 276–278; (d) Pandey, G.; Dumbre, S.
G.; Pal, S.; Khan, M. I.; Shabab, M. Tetrahedron 2007, 63, 4756–4761; (e) Zhang,
H.; Ni, Y. K.; Zhao, G.; Ding, Y. Eur. J. Org. Chem. 2003, 1918–1922; (f) Zambrano,
V.; Rassu, G.; Roggio, A.; Pinna, L.; Zanardi, F.; Curti, C.; Casiraghi, G.; Battistini,
L. Org. Biomol. Chem. 2010, 8, 1725–1730. and the references cited therein.
8. (a) Ceccon, J.; Danoun, G.; Greene, A. E.; Poisson, J.-F. Org. Biomol. Chem. 2009, 7,
2029–2031; (b) Ben-Othman, R.; Othman, M.; Ciamala, K.; Knorr, M.;
Strohmann, C.; Decroix, B. Tetrahedron 2009, 65, 4846–4854; (c) Lesma, G.;
Colombo, A.; Sacchetti, A.; Silvani, A. J. Org. Chem. 2009, 74, 590–596; (d)
Albano, V. G.; Gualandi, A.; Monari, M.; Savoia, D. J. Org. Chem. 2008, 73, 8376–
8381; (e) Bonanni, M.; Marradi, M.; Cardona, F.; Cicchi, S.; Goti, A. Beilstein J.Org.
Chem. 2007, 3, 44; (f) Wakamatsu, H.; Sato, Y.; Fujita, R.; Mori, M. Adv. Synth.
Catal. 2007, 349, 1231–1246; (g) Nath, M.; Mukhopadhyay, R.; Bhattacharjya, A.
Org. Lett. 2006, 8, 317–320; (h) Ceccon, J.; Greene, A. E.; Poisson, J.-F. Org. Lett.
2006, 8, 4739–4742; (i) Langlois, N.; Le Nguyen, B. K.; Retailleau, P.; Tarnus, C.;
Salomon, E. Tetrahedron: Asymmetry 2006, 17, 53–60; (j) Phillips, A. J.; Abell, A.
D. Aldrichim. Acta 1999, 32, 75–89.
agreement with the reported values (obs: ½a D20
ꢂ243, c 1.56, CHCl3
ꢁ
lit.12i,j
½
a 2D0
ꢁ
ꢂ245, c 1.56, CHCl3).
Finally when compound 12 was subjected to Wittig olefination
afforded bicyclic lactam 13 in 70% yield. Spectral data for com-
pound 13 were in close agreement with the reported values
(Obs: ½a 2D0
ꢁ
ꢂ99.6, c 1.2, CHCl3; lit.12d
½
a 2D0
ꢁ
ꢂ98.3 c 1.2, CHCl3). While
both the compounds 12 and 13 have been explored earlier as key
intermediates for the synthesis of pumiliotoxin 251D,12d,i,j it is
evident that 13 is a more viable and an efficient precursor of pumi-
liotoxin 251D than 12, as the conversion of 12 to the corresponding
tertiary alcohol 14 was diastereoselectively poor (1:1.9).12i,j But the
conversion of bicyclic lactam 13 to the corresponding tertiary alco-
hol 14 was highly diastereoselective (10:1).12d Also in comparison
with the reported procedures,12 synthesis routes to 12 and 13 de-
scribed in this Letter are shorter and better yielding.
9. VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 17, 1973–1976.
10. CCDC numbers of 10: CCDC 866794. These numbers contain all crystallographic
details of this publication and are available free of charge at
11. Rassu, G.; Carta, P.; Pinna, L.; Battistini, L.; Zanardi, F.; Acquotti, D.; Casiraghi, G.
Eur. J. Org. Chem. 1999, 1395–1400.
12. (a) Overman, L. E.; Bell, K. L. J. Am. Chem. Soc. 1981, 103, 1851–1853; (b)
Overman, L. E.; Bell, K. L. J. Am. Chem. Soc. 1984, 106, 4192–4201; (c) Trost, B.
M.; Scanlan, T. S. J. Am. Chem. Soc. 1989, 111, 4988–4990; (d) Fox, D. N. A.;
Lathbury, D.; Mahon, M. F.; Molloy, K. C.; Gallagher, T. J. Am. Chem. Soc. 1991,
113, 2652–2656; (e) Cossy, J.; Cases, M.; Pardo, D. G. Synlett 1996, 909–910; (f)
Barrett, A. G. M.; Damiani, F. J. Org. Chem. 1999, 64, 1410–1411; (g) Martin, S. F.;
Bur, S. K. Tetrahedron 1999, 55, 8905–8914; (h) Zhao Gang, Y. N.; Ding, Y. J.
Chem. Soc., Perkin Trans. 1 2000, 3264–3266; (i) Sudau, A.; Munch, W.; Bats, J.-
W.; Nubbemyer, U. Eur. J. Org. Chem. 2002, 3304–3314; (j) Sudau, A.; Munch,
W.; Bats, J.-W.; Nubbemyer, U. Eur. J. Org. Chem. 2002, 3315–3325.
In summary, we have developed a concise and convenient total
synthesis of (6R,7S,8R, 8aS)-6,7,8-trihydroxyindolizidine (1-deoxy-
7,8a-di-epi-castanospermine) 2. This procedure requires a total of 7
steps starting from N-Cbz-L-Proline 5 and proceeded in overall 23%
yield. X-ray analysis of 10 established its unambiguous structural
determination, which in turn confirmed the configurational struc-
ture of 2. In addition, the formal synthesis of pumiliotoxin 251D
was accomplished in a total of 6 or 7 steps starting from 5 in an
overall 30% yield. Olefin 9 resulting from cross metathesis was
used as a common key intermediate for both the syntheses.