6222
M. Mondal et al. / Tetrahedron Letters 53 (2012) 6219–6222
at 1639 cmÀ1 is considerably shifted to lower frequency32 at
1610 cmÀ1 after complexation. Formation of A was further sup-
ported by the observation of a new band in the region of
9. Ohno, H.; Aso, A.; Kadoh, Y.; Fujii, N.; Tanaka, T. Angew. Chem., Int. Ed. 2007, 46,
6325–6328.
10. Nakamura, I.; Kudo, Y.; Araki, T.; Zhang, D.; Kwon, E.; Terada, M. Synthesis 2012,
44, 1542–1550.
11. Kakiya, H.; Yagi, K.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2002, 124,
9032–9033.
451 cmÀ1, assigned to
m
(Cu–N) stretching vibration.33 Moreover
antisymmetric and symmetric COO stretching bands at 1582 and
1425 cmÀ1 are found to be shifted to lower and higher frequencies
1562 and 1444 cmÀ1 respectively upon coordination indicating the
presence of COO group in the complex.32a Additionally mass spec-
troscopic studies also support the formation of A. The same Cu (II)
complex A was formed in the presence or absence of the base indi-
cating that the base did not play any role in the complex formation.
It is important to mention here that when we stir the mixture of
1a, 1b, and Cs2CO3 in the presence of Cu(OAc)2, a deep blue colored
solution was formed. This may be due to the formation of a copper
oxime complex.31 Interestingly we found that 0.5 equiv of
Cu(OAc)2 is enough for the formation of the O-aryloxime ether,
which indirectly supports the involvement of copper complex A
in the reaction. Moreover the reaction of preformed Cu(II) complex
A and 2a gave the same product in good yield which supports the
involvement of in situ formed Cu(II) complex A in the reaction.
In summary we have developed an efficient protocol for the
synthesis of oxime ethers under mild reaction conditions. The reac-
tion was promoted by Cu(OAc)2 in the presence of Cs2CO3 as base.
The reaction was carried out in DMSO which is a usable solvent.34
This method offers a mild and efficient alternative to the existing
protocols since the reaction proceeded at room temperature within
shorter reaction time in the presence of inorganic base.
12. de Lijser, H. J. P.; Rangel, N. A.; Tetalman, M. A.; Tsai, C.-K. J. Org. Chem. 2007, 72,
4126–4134.
13. (a) Goda, H.; Sato, M.; Ihara, H.; Hirayama, C. Synthesis 1992, 849–851; (b)
Goda, H.; Ihara, H.; Hirayama, C.; Sato, M. Tetrahedron Lett. 1994, 35, 1565–
1568; (c) Rad, S.; Navid, M.; Behrouz, S.; Dianat, M. Synthesis 2008, 2055–2064;
(d) Abele, E.; Lukevics, E. Org. Prep. Proced. Int. 2000, 32, 237–264.
14. (a) Li, J.; Li, X.; Liu, X.; MA, J. Front. Chem. Chin. 2009, 4, 58–62; (b) Liu, A.; Ou,
X.; Huang, M.; Wang, X.; Liu, X.; Wang, Y.; Chen, C.; Yao, J. Pest Manag. Sci.
2005, 61, 166–170.
15. (a) De, P.; Nonappa; Pandurangan, K.; Maitra, U.; Wailes, S. Org. Lett. 2007, 9,
2767–2770; (b) Mooradian, A.; Dupont, P. E. J. Heterocycl. Chem. 1967, 4, 441–
444; (c) Jia, X.; Wang, X.; Yang, C.; Da, Y.; Yang, L.; Liu, Z. Tetrahedron 2009, 65,
2334–2338; (d) Abele, E.; Abele, R.; Rubina, K.; Popelis, J.; Sleiksa, I.; Lukevics,
E. Synth. Commun. 1998, 28, 2621–2633; (e) Yamada, T.; Goto, K.; Mitsuda, Y.;
Tsuji, J. Tetrahedron Lett. 1987, 28, 4557–4560; (f) Merkas, S.; Litvic, M.;
Cepanec, I.; Vinkovic, V. Molecules 2005, 10, 1429–1437; (g) Banerjee, T.;
Dureja, P. Molecules 2005, 10, 990–999; (h) Kubmarawa, D.; Barminas, J. T.;
Aliyu, A. O. C. Archives of Applied Science Research 2011, 3, 126–130.
16. Kaminsky, D.; Shavel, J., Jr.; Meltzer, R. I. Tetrahedron Lett. 1967, 10, 859–861.
17. (a) Bittner, S.; Grinberg, S. J. Chem. Soc., Perkin Trans. 1 1976, 1708–1711; (b)
Rad, M. N. S.; Nezhad, A. K.; Karimitabar, F.; Behrouz, S. Synthesis 2010, 10,
1724–1730.
18. Baumann, J. B. Synthesis 1975, 782.
19. Stefani, A.; Lacher, J.; Park, J. J. Org. Chem. 1960, 25, 676.
20. Jin, J.; Li, Y.; Wang, Z.-J.; Qian, W.-X.; Bao, W.-L. Eur. J. Org. Chem. 2010, 1235–
1238.
21. Miyabe, H.; Yoshida, K.; Reddy, V. K.; Matsumura, A.; Takemoto, Y. J. Org. Chem.
2005, 70, 5630–5635.
22. Li, C. B.; Cui, Y.; Zhang, W. Q.; Li, J. L.; Zhang, S. M.; Choi, M. C. K.; Chan, A. S.
Chin. Chem. Lett. 2002, 13, 95–96.
The authors acknowledge the Department of Science and Tech-
nology, New Delhi for financial support for this work (NO. SR/FT/
CS-098/2009). The authors are also thankful to the UGC New Delhi
for Special Assistance Programme (UGC-SAP) and the Department
of Science and Technology for financial assistance under the DST-
FIST programme to the Department of Chemistry, Dibrugarh
University.
23. Meshram, H. M.; Eeshwaraiah, B.; Sreenivas, M.; Aravind, D.; Sundar, B. S.;
Yadav, J. S. Synth. Commun. 2009, 39, 1857–1863.
24. (a) Gamez, P.; Aubel, P. G.; Driessen, W. L.; Reedijk, J. Chem. Soc. Rev. 2001, 30,
376–385; (b) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 114, 1047–1076; (c)
van der Vlugt, J. I.; Meyer, F. Top. Organomet. Chem. 2007, 22, 191–240; (d)
Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.;
Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857–12869; (e) Punniyamurthy, T.;
Rout, L. Coord. Chem. Rev. 2008, 252, 134–154.
25. (a) Qiao, J. X.; Lam, P. Y. S. Synthesis 2011, 6, 0829–0856; (b) Chan, D. M. T.;
Lam, P. Y. S. In Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2005; pp
205–240. Chapter 5; (c) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M.
P. Tetrahedron Lett. 1998, 39, 2933–2936; (d) Evans, D. A.; Katz, J. L.; West, T. R.
Tetrahedron Lett. 1998, 39, 2937–2940; (e) Ley, S. V.; Thomas, A. W. Angew.
Chem., Int. Ed. 2003, 42, 5400–5449; (f) Monnier, F.; Taillefer, M. Angew. Chem.,
Int. Ed. 2009, 48, 6954–6971.
26. (a) Rao, K. S.; Wu, T-S. Tetrahedron 2012, 68, 7735–7754; (b) Suzuki, A. Angew.
Chem., Int. Ed. 2011, 50, 6722–6737; (c) Miyaura, N.; Suzuki, A. Chem. Rev. 1995,
95, 2457–2483; (d) Littke, F. A.; Fu, G. C. Angew Chem., Int. Ed. 2002, 41, 4176–
4211; (e) Sellars, J. D.; Steel, P. G. Chem. Soc. Rev. 2011, 40, 5170–5180; (f)
Demir, A. S.; Reis, O.; Emrullahoglu, M. J. Org. Chem. 2003, 68, 10130–10134.
27. Ali, A.; Meyer, A. G.; Tuck, K. L. Synlett 2009, 0955–0969.
28. Feng, X.-H.; Zhang, G.-Z.; Chen, C.-Q.; Yang, M.-Y.; Xu, X.-Y.; Huang, G.-S. Synth.
Commun. 2009, 39, 1768–1780.
29. Wang, L.; Huang, C.; Cai, C. Catal. Commun. 2010, 11, 532–536.
30. General procedure: To a mixture of acetophenone oxime (1a, 135 mg, 1 mmol),
Cu(OAc)2 (100 mg, 0.5 mmol), Cs2CO3 (325 mg, 1 mmol), aryl boronic acid (2a,
242 mg, 2 mmol) and 4 ml of DMSO was added in open atmosphere in a 50 ml
round bottom flask. The mixture was stirred at room temperature and the
progress was monitored by TLC. After completion of the reaction, the reaction
mixture was quenched with dil. NH4Cl-H2O solution and extracted with ethyl
acetate (3 Â 20 ml). Then the extract was washed with brine (2 Â 20 ml) and
dried over Na2SO4 and evaporated on reduced pressure. Residue was purified
by silica gel chromatography (ethyl acetate–hexane: 1:9) to obtained the
desired products. Thin-layer chromatography was carried out with Merck silica
gel 60F254 plates. Products were characterized by 1H NMR, 13C NMR, FTIR
spectroscopy and Mass spectroscopy.
References and notes
1. (a) Cozzi, P.; Carganico, G.; Fusar, D.; Grossoni, M.; Menichincheri, M.; Pinciroli,
V.; Tonani, R.; Vaghi, F.; Salvati, P. J. Med. Chem. 1993, 36, 2964–2972; (b)
Bhandari, K.; Srinivas, N.; Keshava, G. B. S.; Shukla, P. K. Eur. J. Med. Chem. 2009,
44, 437–447; (c) Johnson, S. M.; Petrassi, H. M.; Palaninathan, S. K.;
Mohamedmohaideen, N. N.; Purkey, H. E.; Nichols, C.; Chiang, K. P.; Walkup,
T.; Sacchettini, J. C.; Sharpless, K. B.; Kelly, J. W. J. Med. Chem. 2005, 48, 1576–
1587; (d) Dijk, J. V.; Zwagemakers, J. M. A. J. Med. Chem. 1977, 20, 1199–1206;
(e) Rossello, A.; Bertini, S.; Lapucci, A.; Macchia, M.; Martinelli, A.; Rapposelli,
S.; Herreros, E.; Macchia, B. J. Med. Chem. 2002, 45, 4903–4912; (f) Watson, K.
G.; Brown, R. N.; Cameron, R.; Chalmers, D. K.; Hamilton, S.; Jin, B.; Krippner, G.
Y.; Luttick, A.; McConnell, D. B.; Reece, P. A.; Ryan, J.; Stanislawski, P. C.; Tucker,
S. P.; Wu, W.-Y.; Barnard, D. L.; Sidwell, R. W. J. Med. Chem. 2003, 46, 3181–
3184.
2. (a) Song, B. A.; Liu, X. H.; Yang, S.; Hu, D. Y.; Jin, L. H.; Zhang, Y. T. Chin. J. Org.
Chem. 2005, 25, 507–525; (b) Tu, S.; Xu, L. H.; Ye, L. Y.; Wang, X.; Sha, Y.; Xiao, Z.
Y. J. Agric. Food Chem. 2008, 56, 5247–5253; (c) Huang, J. X.; Jia, Y. M.; Liang, X.
M.; Zhu, W. J.; Zhang, J. J.; Dong, Y. H.; Yuan, H. Z.; Qi, S. H.; Wu, J. P.; Chen, F. H.;
Wang, D. Q. J. Agric. Food Chem. 2007, 55, 10857–10863; (d) Sun, R.; Lu, M.;
Chen, L.; Li, Q.; Song, H.; Bi, F.; Huang, R.; Wang, Q. J. Agric. Food Chem. 2008, 56,
11376–11391; (e) Nakayama, A.; Iwamura, H.; Niwa, A.; Nakagawa, Y.; Fujita,
Y. J. Agric. Food Chem. 1985, 33, 1034–1041.
3. (a) Huang, X.; Marciales, M. O.; Huang, K.; Stepanenko, V.; Merced, F. G.; Ayala,
A. M.; Correa, W.; De Jesús, M. Org. Lett. 2007, 9, 1793–1795; (b) Moody, C. J.
Chem. Commun. 2004, 1341–1351.
4. Wang, H.-Y.; Mueller, D. S.; Sachwani, R. M.; Londino, H. N.; Anderson, L. L. Org.
Lett. 2010, 12, 2290–2293.
31. (a) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Averill, K. M.; Chan, D. M. T.
Synlett 2000, 674–676; (b) Lam, P. Y. S.; Bonne, D.; Vincent, G.; Clark, C. G.;
Combs, A. P. Tetrahedron Lett. 2003, 44, 1691–1694.
32. (a) Patel, N. A.; Shah, J. R.; Patel, R. P. J. Indian Chem. 1980, 19A, 236–239; (b)
Canpolat, E.; Kaya, M. J. Coord. Chem 2002, 55, 1419–1426.
5. Ueda, M.; Sato, A.; Ikeda, Y.; Miyoshi, T.; Naito, T.; Miyata, O. Org. Lett. 2010, 12,
2594–2597.
33. Soleimani, E. J. Chin. Chem. Soc. 2010, 57, 653–658.
6. Miyabe, H.; Fujii, K.; Naito, T. Org. Lett. 1999, 1, 569–572.
34. Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A. H.;
Kleine, P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefaniak, M. Green Chem. 2008,
10, 31–36.
7. Ghosh, A. K.; Mckee, S. P.; Sanders, W. M. Tetrahedron Lett. 1991, 32, 711–714.
8. Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem., Int. Ed.
2008, 47, 9462–9465.