6050
J. S. Yadav et al. / Tetrahedron Letters 53 (2012) 6048–6050
7.37–7.31 (m, 2H), 7.31–7.25 (m, 1H), 7.21 (d, J = 6.9 Hz, 2H), 5.86 (ddd,
Finally, we attempted the coupling of 6 with 13 so as to con-
J = 17.3, 10.4, 5.7 Hz, 1H), 5.36 (d, J = 17.3 Hz, 1H), 5.23 (d, J = 10.4 Hz, 1H),
4.75–4.68 (m, 1H), 4.53–4.49 (m, 1H), 4.26–4.17 (m, 2H), 3.92–3.85 (m, 1H),
3.26 (dd, J = 13.8, 3.4 Hz, 1H), 2.80 (dd, J = 12.7, 9.2 Hz, 1H), 1.26 (d, J = 6.9 Hz,
3H); 13C NMR (CDCl3, 75 MHz): d 176.4, 153.0, 137.2, 134.9, 129.3, 128.9,
struct a 10-membered ring via the RCM reaction. Accordingly,
the coupling of acid 6 with alcohol 13 under Steglich conditions
gave the ester 14 in 85% yield.9 Upon treatment of 14 with the
Grubbs’ second generation catalyst10 in CH2Cl2 at reflux tempera-
ture for 3 h gave the Z-isomer of cytospolide E 15 in 70% yield.
The structure of 15 was ascertained by its NMR spectrum. The
geometry of the olefin in 15 was determined as ‘Z’ from its coupling
constants, while one of the olefinic proton signals appears at d
5.71 ppm as a dt (J = 3.0, 12.0 Hz) and another signal for the olefinic
proton appears at d 5.14 ppm as a triplet (J = 9.8 Hz) which clearly
reveals the Z geometry of the olefin. Deprotection of MOM ethers of
15 using CeCl3ꢁ7H2O11 in refluxing CH3CN gave the Z-isomer of
cytospolide E 16 in 88% yield (Scheme 4).
127.3, 116.2, 72.5, 66.1, 55.0, 42.4, 37.7, 10.9; IR (neat): vmax 3489, 2926, 2851,
1778, 1697, 1605, 1454, 1386, 1213, 1108, 977, 702 cmꢀ1. MS (ESI): m/z 312
[M+Na]+. (S)-4-Benzyl-3-((2S,3R)-3-(methoxymethoxy)-2-methylpent-4-enoyl)
oxazolidin-2-one (5): ½a D20
ꢂ
23.7 (c = 2.6, CHCl3); 1H NMR (300 MHz, CDCl3): d
7.37–7.19 (m, 5H), 5.87–5.74 (ddd, J = 17.3, 10.5, 7.5 Hz, 1H), 5.29 (d, J = 7.5 Hz,
1H), 5.25 (s, 1H), 4.68–4.58 (m, 2H), 4.55–4.50 (m, 1H), 4.26 (t, J = 6.7 Hz, 1H),
4.19–4.16 (m, 2H), 4.12 (t, J = 6.7 Hz, 1H), 3.35 (s, 3H), 3.29 (dd, J = 13.5, 3.7 Hz,
1H), 2.77 (dd, J = 13.5, 9.8 Hz, 1H), 1.28 (d, J = 6.8 Hz, 3H); 13C NMR (CDCl3,
75 MHz): d 173.8, 152.7, 135.1, 134.8, 128.9, 128.4, 126.8, 118.4, 93.5, 76.5,
65.5, 55.2, 55.1, 41.6, 37.3, 12.3; IR (neat): vmax 3065, 2981, 2934, 2849, 1781,
1700, 1604, 1454, 1385, 1216, 1097, 1029, 703 cmꢀ1
. MS (ESI): m/z 356
[M+Na]+. (2S,3R)-3-(Methoxymethoxy)-2-methylpent-4-enoic acid (6):
½ ꢂ
a 2D0
ꢀ67.5 (c = 2.8, CHCl3). 1H NMR (300 MHz, CDCl3): d 5.82–5.68 (ddd, J = 17.5,
10.0, 8.1 Hz, 1H), 5.33 (d, J = 2.2 Hz, 1H), 5.29 (d, J = 1.7 Hz, 1H), 4.64 (q,
J = 6.8 Hz, 2H), 4.31 (t, J = 6.2 Hz, 1H), 3.37(s, 3H), 2.71 (t, J = 6.0 Hz, 1H), 1.23
(d, J = 6.9 Hz, 3H); 13C NMR CDCl3, 75 MHz): d 179.2, 135.0, 119.4, 93.8, 77.9,
55.6, 44.5, 11.8; IR (neat)): vmax 3084, 2984, 2940, 1736, 1713, 1458, 1383,
The relative stereochemistry of 16 was deduced from the 1H–1H
coupling constants and NOESY data. The geometry of the
bond was assigned as Z based on the proton coupling constant
(3JH4 H5
= 11.1 Hz) and nOe studies. The presence of nOe between
H-2 and H-4, H-5 and H-7b, indicates the b-orientation of these
protons. The nOe between H-3 and H-10, H-3 and H-6 indicates
the -orientation of H-3, H6 and H10 (Fig. 2). The above observa-
D
4 double
1219, 1153, 1032, 772 cmꢀ1 MS (ESI): m/z 197 [M+Na]+. (5S,6R)-6-(tert-
;
,
Butyldimethylsilyloxy)undec-1-en-5-ol (11): ½a D20
ꢂ
ꢀ12.6 (c = 2.3, CHCl3); 1H NMR
(300 MHz, CDCl3): d 5.88–5.78 (m, 1H), 5.04 (d, J = 16.8 Hz, 1H), 4.97 (d,
J = 9.8 Hz, 1H), 3.64–3.56 (m, 2H), 2.30–2.20 (m, 1H), 2.15–2.04 (m, 1H), 1.65
(brs, 1H), 1.56–1.17 (m, 10H), 0.91–0.85 (m, 12H), 0.06 (s, 6H); 13C NMR (CDCl3,
75 MHz): d 138.5, 114.7, 75.3, 73.9, 32.0, 30.9, 30.7, 30.3, 25.8, 25.3, 22.5, 18.0,
14.0, ꢀ4.4; IR (neat): vmax 3480, 3078, 2931, 2858, 1641, 1465, 1362, 1255,
1081, 836, 775 cmꢀ1. MS (ESI): m/z 323 [M+Na]+. (5S,6R)-5-(But-3-enyl)-8,8,9,9-
a
a
a
tion reveals the Z stereochemistry of the cytospolide E.12
In summary, we have developed an efficient synthetic route for
the stereoselective total synthesis of the Z-isomer of cytospolide E
starting from a readily available acrolein and n-hexanal. The syn-
thetic strategy involves asymmetric Aldol reaction, Sharpless ki-
netic resolution and RCM cyclisation as key steps. The total
synthesis of 16 was accomplished in 12 steps, with 15% overall
yield.
tetramethyl-6-pentyl-2,4,7-trioxa-8-siladecane (12): ½ ꢂ ½ ꢂ ꢀ33.6 (c = 2.2,
a 2D0 a 2D0
CHCl3); 1H NMR (500 MHz, CDCl3): d 5.87–5.76 (m, 1H), 5.02 (d, J = 15.0 Hz,
1H), 4.96 (d, J = 10.3 Hz, 1H), 4.69 (q, J = 6.9 Hz, 2H), 3.69–3.63 (m, 1H), 3.54–
3.48 (m, 1H), 3.38 (s, 3H), 2.28–2.13 (m, 1H), 2.12–2.02 (m, 1H), 1.67–1.17 (m,
10H), 0.91–0.84 (m, 12H), 0.06 (s, 6H); 13C NMR (CDCl3,75 MHz): d 138.6,
114.5, 96.0, 79.9, 74.5, 55.7, 32.9, 32.0, 30.2, 29.8, 25.9, 25.5, 22.5, 18.1, 14.0,
ꢀ4.2, ꢀ4.6; IR (neat): vmax 3078, 2951, 2859, 1641, 1465, 1382, 1253, 1147,
1096, 1038, 915, 835, 775 cmꢀ1 MS (ESI): m/z 367 [M+Na]+. (5S,6R)-5-
;
(Methoxymethoxy)undec-1-en-6-ol (13): ½ ꢂ
a 2D0 8.3 (c = 2.7, CHCl3). 1H NMR
(500 MHz, CDCl3): d 5.89–5.74 (m, 1H), 5.09–4.95 (m, 2H), 4.70 (q, J = 6.8 Hz,
2H), 3.65–3.50 (m, 2H), 3.43 (s, 3H), 2.30–2.16 (m, 1H), 2.15–2.00 (m, 1H),
1.74–1.17 (m, 10H), 0.90 (t, J = 6.8 Hz, 3H); 13C NMR (CDCl3,75 MHz): d 138.2,
114.9, 97.2, 83.4, 73.0, 55.8, 31.9, 31.5, 29.3, 25.8, 25.6, 22.6, 14.0; IR (neat):
vmax 3456, 3077, 2931, 2858, 1736, 1642, 1455, 1378, 1150, 1098, 1036,
914 cm-1; MS (ESI): m/z 253 [M+Na]+. (2S,3R)-((5S,6R)-5-(Methoxymethoxy)
Acknowledgements
T.P., A.S., P.A.R., and A.R. are thankful to the UGC, CSIR, New Del-
hi, for the award of fellowships.
undec-1-en-6-yl) 3-(methoxymethoxy)-2-methylpent-4-enoate (14): ½a D20
ꢀ54.2
ꢂ
(c = 1.0, CHCl3). 1H NMR (300 MHz, CDCl3): d 5.88–5.67 (m, 2H), 5.31–5.20 (m,
2H), 5.08–4.94 (m, 3H), 4.70 (dd, J = 9.0, 6.8 Hz, 2H), 4.55 (dd, J = 12.8, 6.8 Hz,
2H), 4.18 (t, J = 7.5 Hz, 1H), 3.66–3.59 (m, 1H), 3.38 (s, 3H), 3.36 (s, 3H), 2.64 (t,
J = 6.8 Hz, 1H), 2.31–2.00 (m, 2H), 1.70–1.46 (m,3H), 1.38–1.16 (m, 10H), 0.88
(t, J = 6.8 Hz, 3H); 13C NMR (CDCl3, 75 MHz): d 173.7, 138.1, 135.7, 119.1, 115.0,
95.9, 93.9, 78.4, 77.2, 74.9, 55.7, 55.6, 45.2, 31.6, 29.8, 29.6, 29.2, 25.3, 22.5,
13.9, 13.1; IR (neat): vmax 3079, 2930, 2857, 1733, 1641, 1458, 1377, 1153,
References and notes
1. Gurusiddaiah, S.; Ronald, R. C. Antimicrob. Agents Chemother. 1981, 153.
2. Singh, M. P.; Janso, J. E.; Brady, S. F. Mar. Drugs 2007, 5, 71.
3. Li, Y.; Li, C.-W.; Cui, C.-B.; Liu, X.-Z.; Che, Y.-S. Nat. Prod. Bioprospect. 2012, 2, 70.
4. Lu, S.; Kurtán, T.; Yang, G.; Sun, P.; Mándi, A.; Krohn, K.; Draeger; Schulz, S. B.;
Yi, Y.; Li, L.; Zhang, W. Eur. J. Org. Chem 2011, 5452.
5. (a) Srihari, P.; Kumaraswamy, B.; Shankar, P.; Ravishashidhar, V.; Yadav, J. S.
Tetrahedron Lett. 2010, 51, 6174; (b) Yadav, J. S.; Reddy, Ch. S. Org. Lett. 2009, 11,
1705; (c) Yadav, J. S.; Pattanayak, M. R.; Das, P. P.; Mohapatra, D. K. Org. Lett.
2011, 13, 1710; (d) Yadav, J. S.; Rajender, V. Eur. J. Org. Chem. 2010, 2148; (e)
Yadav, J. S.; Pandurangam, T.; Reddy, V. V.; Reddy, B. V. S. Synthesis 2010, 4300.
6. (a) Gage, J. R.; Evans, D. A. Org. Synth. 1989, 68, 83; (b) Evans, D. A.; Bartroli, J.;
Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127.
7. Parsons, J. G.; Stachurska-Buczek, D.; Choi, N.; Griffiths, P. G.; Huggins, D. A.;
Krywult, B. M.; Marino, S. T.; Nguyen, T.; Sheehan, C. S.; James, I. W.; Bray, A.
M.; White, J. M.; Boyce, R. S. Molecules 2004, 9, 449.
8. Sharpless, K. B.; Behrens, H. C.; Katsuki, T.; Lee, M. W. A.; Martin, S. V.; Takatani,
M.; Viti, M. S.; Walker, J. F.; Woodard, S. S. Pure Appl. Chem. 1983, 55, 589.
9. (a) Murga, J.; Falomir, E.; Garcıa-Fortanet, J.; Carda, M.; Marco, J. A. Org. Lett.
2002, 4, 3447; (b) Yadav, J. S.; Lakshmi, K. A.; Reddy, N. M.; Prasad, A. R.; Reddy,
B. V. S. Tetrahedron 2010, 66, 334.
10. (a) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446; (b) Deiters,
A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.
11. Sabitha, G.; Babu, R. S.; Rajkumar, M.; Srividya, R.; Yadav, J. S. Org. Lett. 2001, 3,
1149.
;
1034, 920, 768 cmꢀ1 MS (ESI): m/z 409 [M+Na]+. (3S,4R,9S,10R,Z)-4,9-
Bis(methoxymethoxy)-3-methyl-10-pentyl-3,4,7,8,9,10-hexahydrooxecin-2-one
(15): ½a 2D0
ꢂ
ꢀ37.5 (c = 1.2, CHCl3); 1H NMR (300 MHz, CDCl3): d 5.73 (dt, J = 12.0,
3.0 Hz, 1H), 5.17 (t, J = 9.8 Hz, 1H), 5.08–5.00 (m, 1H), 4.73 (d, J = 6.8 Hz, 1H),
4.62 (q, J = 6.8 Hz, 2H), 4.51 (t, J = 6.8 Hz, 2H), 3.62 (t, J = 5.2 Hz, 1H), 3.42 (s,
3H), 3.38 (s, 3H), 2.67–2.51 (m, 2H), 2.19-2.00 (m, 2H), 1.70-1.46 (m, 3H), 1.43-
1.22 (m, 10H), 0.90 (t, J = 6.8 Hz, 3H); 13C NMR (CDCl3, 75 MHz): d 172.7, 135.8,
127.0, 94.5, 93.9, 77.2, 74.9, 72.5, 55.7, 47.5, 31.5, 31.3, 30.3, 29.7, 24.9, 24.7,
22.5, 15.4, 13.9; IR (neat): vmax 2931, 2857, 1740, 1456, 1370, 1252, 1152,
1099, 1035, 920, 745 cmꢀ1; MS (ESI): m/z 381 [M+Na]+. (3S,4R,9S,10R,Z)-4,9-
Dihydroxy-3-methyl-10-pentyl-3,4,7,8,9,10-hexahydrooxecin-2-one (16): White
solid, mp 136–140ꢀC; ½a D20
ꢂ
26.6 (c = 0.8, CHCl3); 1H NMR (500 MHz, CDCl3): d
5.75 (ddd, J = 11.1, 4.5, 1.1 Hz, 1H), 5.37 (dt, J = 9.9, 2.2 Hz, 1H), 5.12 (dt, J = 9.5,
3.7 Hz,1H), 4.64 (t, J = 9.9 Hz, 1H), 3.81 (dt, J = 4.6, 3.7 Hz, 1H), 2.73 (dq, J = 12.9,
3.9 Hz, 1H), 2.51 (qd, J = 9.9, 6.9 Hz, 1H), 2.13–1.90 (m, 2H), 1.67–1.49 (m, 2H),
1.44–1.20 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H); 13C NMR (CDCl3, 75 MHz): d 174.6,
133.8, 129.9, 77.6, 74.3, 69.5, 49.1, 31.3, 30.8, 29.6, 25.2, 25.1, 22.4, 14.8, 13.8;
IR (KBr): vmax 3236, 2923, 2855, 1729, 1449, 1253, 1039, 766 cmꢀ1; MS (ESI):
m/z 293 [M+Na]+.
12. Spectral data for (S)-4-Benzyl-3-((2S,3R)-3-hydroxy-2-methylpent-4-enoyl)
oxazolidin-2-one (4): ½a D20
ꢂ
53.7 (c = 0.7, CHCl3); 1H NMR (500 MHz, CDCl3): d