G. Fabrizi and F. Marinelli, Org. Lett., 2002, 4, 2409; (d) S. Mehta,
J. P. Waldo and R. C. Larock, J. Org. Chem., 2009, 74, 1141.
3 (a) Z. W. Just and R. C. Larock, J. Org. Chem., 2008, 73, 2662;
(b) B. Crone and S. F. Kirsch, J. Org. Chem., 2007, 72, 5435; (c) S. Ma,
Acc. Chem. Res., 2009, 42, 1679; (d) X. Jiang, C. Fu and S. Ma,
Chem.–Eur. J., 2008, 14, 9656, for a correction, see: X. Jiang, C. Fu and
S. Ma, Chem.–Eur. J., 2009, 15, 1295; (e) S. Ma, Z. Shi and Z. Yu,
Tetrahedron Lett., 1999, 40, 2393; (f) S. Ma, Z. Shi and Z. Yu,
Tetrahedron, 1999, 55, 12137; (g) C. Fu and S. Ma, Eur. J. Org. Chem.,
2005, 3942.
4 (a) D. W. Knight, A. L. Redfern and J. Gilmore, Chem. Commun.,
1998, 2207; (b) D. W. Knight, A. L. Redfern and J. Gilmore,
J. Chem. Soc., Perkin Trans. 1, 2001, 2874; (c) M. Yoshida,
M. Al-Amin and K. Shishido, Tetrahedron Lett., 2009, 50, 6268.
5 (a) J. Barluenga, M. Trincado, E. Rubio and J. M. Gonzalez, Angew.
Chem., 2003, 115, 2508 (Angew. Chem., Int. Ed., 2003, 42, 2406);
(b) D. Yue, T. Yao and R. C. Larock, J. Org. Chem., 2006, 71, 62.
6 (a) Q. Huang, J. A. Hunter and R. C. Larock, J. Org. Chem., 2002,
67, 3437; (b) D. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil and
Y. Yamamoto, Angew. Chem., 2007, 119, 4848 (Angew. Chem., Int. Ed.,
2007, 46, 4764); (c) D. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil,
Z. Huo and Y. Yamamoto, J. Am. Chem. Soc., 2008, 130, 15720.
7 (a) X. Zhang, M. A. Campo, T. Yao and R. C. Larock, Org. Lett.,
2005, 7, 763; (b) X. Zhang, T. Yao, M. A. Campo and
R. C. Larock, Tetrahedron, 2010, 66, 1177; (c) Z. Huo,
I. D. Gridnev and Y. Yamamoto, J. Org. Chem., 2010, 75, 1266.
8 (a) B. L. Flynn, P. Verdier-Pinard and E. Hamel, Org. Lett., 2001,
3, 651; (b) D. Yue and R. C. Larock, J. Org. Chem., 2002, 67, 1905;
(c) K. O. Hessian and B. L. Flynn, Org. Lett., 2003, 5, 4377.
9 (a) A. Y. Peng and Y. X. Ding, Org. Lett., 2004, 6, 1119;
(b) A. Y. Peng and Y. X. Ding, Tetrahedron, 2005, 61, 10303.
10 (a) X. Zhang, S. Sarkar and R. C. Larock, J. Org. Chem., 2006,
71, 236; (b) J. Barluenga, H. Vazque-Villa, I. Merino,
A. Ballesteros and J. M. Gonzalez, Chem.–Eur. J., 2006, 12, 5790.
11 (a) J. Barluenga, H. Vazquez-Villa, A. Ballesteros and J. M. Gonzalez,
Org. Lett., 2003, 5, 4121; (b) F. Yang, T. Jin, M. Bao and
Y. Yamamoto, Chem. Commun., 2011, 47, 4013; (c) J. Barluenga,
E. Campos-Gomez, A. Minatti, D. Rodriguez and J. M. Gonzalez,
Chem.–Eur. J., 2009, 15, 8946; (d) J. Barluenga, J. M. Gonzalez, P. J.
Campos and G. Asensio, Angew. Chem., Int. Ed. Engl., 1988, 27, 1546.
12 (a) Z. A. Khan and T. Wirth, Org. Lett., 2009, 11, 229; (b) H.-P. Bi,
L.-N. Guo, X.-H. Duan, F.-R. Gou, S.-H. Huang, X.-Y. Liu and
Y.-M. Liang, Org. Lett., 2007, 9, 397; (c) L. Zhang, Y. Zhu, G. Yin,
P. Lu and Y. Wang, J. Org. Chem., DOI: 10.1021/jo300339a.
13 (a) F. Yang, K.-G. Ji, H.-T. Zhu, A. Shaukat, X.-Y. Liu and
Y.-M. Liang, Chem.–Eur. J., 2011, 17, 4986; (b) B. Crone,
S. F. Kirsch and K.-D. Umland, Angew. Chem., Int. Ed., 2010,
49, 4661.
Scheme 3 Proposed mechanism for the formation of 2 and 3.
Substrates 1 are transformed into 2 through the path a. Firstly, in
the presence of Lewis acidic iodine, propargylic alcohol 1 (R = Me
or Ph) is converted to the intermediate E through the elimination of
the hydroxyl group in an unstable hypoiodous acid (HOI) form.11b
The formed E could be resonated with allene carbocation F.
Nucleophilic attack by the oxygen of the carbonyl group on F is
followed by SN2 attack of the halide anion on the benzyl group to
give the benzyl halide and the allene G. Finally, electrophilic
addition of an adjacent phenyl group on iodonium led to the
formation of the spirocycle 2. According to the substrate survey
and literature processes, the formation of the byproduct 3 is by the
path b. Coordinated with the iodine cation, propargylic alcohol 1
(R = Me) is transformed into enyne H through dehydration.25
Electrophilic addition to enyne H led to the formation of
iodonium intermediate I. The 5-exo-trig cyclization by the
oxygen of the carbonyl group on the iodonium I is followed by
SN2 attack of the halide anion on the benzyl group to give the
benzyl halide and the byproduct 3.
In conclusion, we have developed an efficient approach for the
synthesis of substituted 2-iodo-3-phenyl-30H-spiro[indene-1,10-iso-
benzofuran]-30-ones in moderate to good yields from benzyl-2-
(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzoate derivatives under
mild reaction conditions. The halogenated moiety can be readily
introduced into the spirocycle at a position not easily obtained
previously.
14 J. Barluenga, D. Palomas, E. Rubio and J. M. Gonzalez, Org.
Lett., 2007, 9, 2823.
15 J. Barluenga, M. Trincado, E. Rubio and J. M. Gonzalez, J. Am.
Chem. Soc., 2004, 126, 3416.
16 J. Barluenga, H. Vazquez-Villa, A. Ballesteros and J. M. Gonzalez,
J. Am. Chem. Soc., 2003, 125, 9028.
17 J. Barluenga, M. Trincado, M. Marco-Arias, A. Ballesteros,
E. Rubio and J. M. Gonzalez, Chem. Commun., 2005, 2008.
18 J. Barluenga, G. P. Romanelli, L. J. Alvarez-Garcia, I. Llorente,
J. M. Gonzalez, E. Garcia-Rodriguez and S. Garcia-Granda,
Angew. Chem., Int. Ed., 1998, 37, 3136.
We thank the National Science Foundation (NSF-21072080)
and the National Basic Research Program of China (973 Program)
2010CB833203 for financial support. We also acknowledge the
support by the ‘‘111’’ Project.
19 (a) N. Watanabe, A. Ikeno, H. Minato, H. Nakagawa,
C. Kohayakawa and J. Tsuji, J. Med. Chem., 2003, 46, 3961;
(b) J. Schripsema, G. P. Caprini, R. van der Heijden, R. Bino,
R. de Vos and D. Dagnino, J. Nat. Prod., 2007, 70, 1495.
20 H.-T. Zhu, K.-G. Ji, F. Yang, L.-J. Wang, Sh.-Ch. Zhao,
A. Shaukat, X.-Y. Liu and Y.-M. Liang, Org. Lett., 2011, 13, 684.
21 CCDC 861376 (2a) and 893622 (3zb)w.
22 (a) I. B. Campbell, The Sonogashira Cu–Pd-Catalyzed Alkyne
Coupling Reaction, in Organocopper Reagents, ed. R. T. K.
Taylor, Oxford, UK, 1994, p. 217; (b) K. Sonogashira and
S. Takahashi, Yuki Gosei Kagaku Kyokaishi, 1993, 51, 1053.
23 W. Cabri and I. Candiani, Acc. Chem. Res., 1995, 28, 2.
24 N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.
25 (a) W. Yan, X. Ye, N. G. Akhmedov, J. L. Petersen and X. Shi,
Org. Lett., 2012, 14, 2358; (b) X. Chen, P. Lu and Y. Wang,
Chem.–Eur. J., 2011, 87, 8105.
Notes and references
1 (a) F. Yang, T. Jin, M. Bao and Y. Yamamoto, Chem. Commun.,
2011, 47, 4541; (b) T. Yao, X. Zhang and R. C. Larock, J. Org. Chem.,
2005, 70, 7679; (c) A. Sniady, M. S. Morreale, K. A. Wheeler and
R. Dembinski, Eur. J. Org. Chem., 2008, 3449; (d) Y.-X. Xie,
X.-Y. Liu, L.-Y. Wu, Y. Han, L.-B. Zhao, M.-J. Fan and
Y.-M. Liang, Eur. J. Org. Chem., 2008, 1013; (e) K.-G. Ji,
H.-T. Zhu, F. Yang, A. Shaukat, X.-F. Xia, Y.-F. Yang, X.-Y. Liu
and Y.-M. Liang, J. Org. Chem., 2010, 75, 5670; (f) A. Sniady,
K. A. Wheeler and R. Dembinski, Org. Lett., 2005, 7, 1769;
(g) Y. Liu and S. Zhou, Org. Lett., 2005, 7, 4609; (h) X. Huang,
W. Fu and M. Miao, Tetrahedron Lett., 2008, 49, 2359.
2 (a) A. Arcadi, S. Cacchi, G. Fabrizi, F. Marinelli and L. Moro,
Synlett, 1999, 1432; (b) D. Yue, T. Yao and R. C. Larock, J. Org.
Chem., 2005, 70, 10292; (c) A. Arcadi, S. Cacchi, S. Di Giuseppe,
c
10750 Chem. Commun., 2012, 48, 10748–10750
This journal is The Royal Society of Chemistry 2012