10.1002/anie.201809919
Angewandte Chemie International Edition
COMMUNICATION
References
1 B. M. Trost, Acc. Chem. Res. 1980, 13, 385–393.
2 (a) J. Tsuji, Organic Synthesis with Palladium Compounds, Springer: New York, 1980. (b) B. M. Trost, D. L. Van Vranken, 1996, 96, 395–422.
3 (a) G. Consiglio, R. M. Waymouth, Chem. Rev. 1989, 89, 257–276. (b) A. Heumann, M. Reglier, Tetradedron 1995, 51, 975–1015.
4 B. M. Trost, M. R. Machacek, A. Aponick, Acc. Chem. Res. 2006, 39, 747.
5 S. -C. Sha, J. Zhang, P. J. Carroll, P J. Walsh, J. Am. Chem. Soc. 2013, 135, 17602–17609.
6 S. Son, G. C. Fu, J. Am. Chem. Soc. 2008, 130, 2756–2757.
7 (a) B. M. Trost, C. R. Self, J. Org. Chem. 1984, 49, 468–473. (b) B. M. Trost, E. Keinan, Tetrahedron Lett. 1980, 21, 2591–2594.
8 E. Negishi, H. Matsushita, S. Chatterjee, R. A. John, J. Org. Chem. 1982, 47, 3188–3190.
9 M. Braun, T. Meier, Angew. Chem. Int. Ed. 2006, 45, 6952–6955.
10 T. Graening, J. F. Hartwig, J. Am. Chem. Soc. 2005, 127, 17192–17193.
11 B. M. Trost, G. M. Schroeder, J. Am. Chem. Soc. 1999, 121, 6759–6760.
12 M. Braun, T. Meier, Angew. Chem. Int. Ed. 2006, 45, 6952–6955.
13 S. B. Lang, K. M. O’Nele, J. A. Tunge, J. Am. Chem. Soc. 2014, 136, 13606–13609.
14 (a) J. C. Tellis, D. N. Primer, G. A. Molander, Science 2014, 345, 433–436. (b) Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terett, A. G. Doyle, D.
W. C. MacMillan, Science 2014, 345, 437–440.
15 (a) V. Corce, L. –M. Chamoreau, E. Derat, J. –P. Goddard, C. Ollivier, L. Fensterbank, Angew. Chem. Int. Ed. 2015, 54, 11414–11418. (b)
M. Jouffroy, D. N. Primer, G. A. Molander, J. Am. Chem. Soc. 2016, 138, 475–478. (c) K. Nakajima, S. Nojima, Y. Nishibayashi, Angew. Chem.
Int. Ed. 2016, 55, 14106–14316. (d) A. Gutierrez-Bonet, J. C. Tellis, J. K. Matsui, B. A. Vara, G. A. Molander, ACS Catal. 2016, 6, 8004–8008.
16 Photoredox catalysis reviews: (a) J. C. Tellis, C. B. Kelly, D. N. Primer, M. Jouffroy, N. R. Patel, G. A. Molander, Acc. Chem. Res. 2016, 49,
1429–1439. (b) J. K. Matsui, S. B. Lang, D. R. Heitz, G. A. Molander, ACS Catal. 2017, 7, 2563–2575. (c) C. K. Prier, D. A. Rankic, D. W. C.
MacMillan, Chem. Rev. 2013, 113, 5322–5363. (d) M. N. Hopkinson, B. Sahoo, J. –L. Li, F. Glorius, Chem. Eur. J. 2014, 20, 3874–3886.
17 N. R. Patel, C. B. Kelly, M. Jouffroy, G. A. Molander, Org. Lett. 2016, 18, 764–767.
18 S. Zheng, D. N. Primer, G. A. Molander, ACS Catal. 2017, 7, 7957–7961.
19 (a) J. Amani, E. Sodagar, G. A. Molander, Org. Lett. 2016, 18, 732–735. (b) J. Amani, G. A. Molander, Org. Lett. 2017, 82, 1856–1863.
20 J. Amani, G. A. Molander, Org. Lett. 2017, 19, 3612–3615.
21 J. Amani, R. Alam, S. Badir, G. A. Molander, Org. Lett. 2017, 19, 2426–2429.
22 S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299–309.
23 B. M. Trost, G. A. Molander, J. Am. Chem. Soc. 1981, 103, 5969–5972. For an extensive review article, see: J. He, J. Ling, P. Chiu, Chem.
Rev. 2014, 114, 8037–8128.
24 S. Crotti, F. Bertolini, F. Macchia, M. Pineschi, Org. Lett. 2009, 11, 3762. During the course of our studies, Gong and coworkers published a
method describing a reductive allylation of tertiary alkyl halides using allylic carbonates: H. Chen, X. Jia, Y. Yu, Q. Qian, H. Gong, Angew.
Chem. Int. Ed. 2017, 56, 13103–13106. Their report includes deuterium studies supporting the formation of a π-allylnickel intermediate.
25 Secondary alkyltrifluoroborates have significantly high reduction potentials at +1.50 V vs SCE (see D. N. Primer, K. Karakaya, J. C. Tellis, G.
A. Molander, J. Am. Chem. Soc. 2015, 137, 2195–2198).
26 (a) N. Tewari, N. Dwivedi, R. Tripathi, Tetrahedron Lett. 2004, 45, 9011−9014. (b) H. Adibi, H. A. Samimi, M. Beygzadeh, Catal. Commun.
2007, 8, 2119−2124. (c) A. Heydari, S. Khaksar, M. Tajbakhsh, H. R. Bijanzadeh, J. Fluorine Chem. 2009, 130, 609−614.(d) D. Zhang, L.-Z.
Wu, L. Zhou, X. Han, Q.-Z. Yang, L.-P. Zhang, C.-H. Tung, J. Am. Chem. Soc. 2004, 126, 3440−3441. (e) X. Wei, L. Wang, W. Jia, S. Du, L.
Wu, Q. Liu, Chin. J. Chem. 2014, 32, 1245−1250. (f) S. Fukuzumi, T. Suenobu, M. Patz, T. Hirasaka, S. Itoh, M. Fujitsuka, O. Ito, J. Am. Chem.
Soc. 1998, 120, 8060−8068. (g) D. Wang, Q. Liu, B. Chen, L. Zhang, C. Tung, L. Wu, Chin. Sci. Bull. 2010, 55, 2855−2858.
27 (a) K. Nakajima, S. Nojima, K. Sakata, Y. Nishibayashi, ChemCatChem 2016, 8, 1028−1032. (b) W. Chen, Z. Liu, J. Tian, J. Li, J. Ma, X.
Cheng, G. Li, J. Am. Chem. Soc. 2016, 138, 12312−12315. (c) L. Buzzetti, A. Prieto, S. R. Roy, P. Melchiorre Angew. Chem. Int. Ed. 2017, 56,
15039–15043. (d) C. Verrier, N. Alandini, C. Pezzetta, M. Moliterno, L. Buzzetti, H. B. Hepburn, A. Vega-Penaloza, M. Silvi, P. Melchiorre, ACS
Catal. 2018, 8, 1062–1066. For a recent review, see: W. Huang, X. Cheng, Synlett 2017, 28, 148–158.
28 (a) S. O. Badir, A. Dumoulin, J. K. Matsui, G. A. Molander, Angew. Chem. Int. Ed. 2018, 57, 6610–6613. (b) A. Dumoulin, J. K. Matsui, A.
Gutierrez-Bonet, G. A. Molander, Angew. Chem. Int. Ed. 2018, 57, 6614–6618.
29 N. A. Butt, W. Zhang, Chem. Soc. Rev. 2015, 44, 7929–7967.
30 Z. G. Khalil, A. A. Salim, D. Vuong, A. Crombie, E. Lacey, A. Blumental, R. J. Capon, J. Antibiot. 2017, 70, 1097–1103. (b) Bayliss, M.; M. I.
Donaldson, S. A. Nepogodiev, G. Pergolizzi, A. E. Scott, N. J. Harmer, R. A. Field, J. L. Prior, Carbohydr. Res. 2017, 452, 17–24. Synthetic
efforts: (c) S. Zhao, N. P. Mankad, Angew. Chem. Int. Ed. 2018, 130, 5969–5972. (d) A. Szekreyi, X. Garrabou, T. Parella, J. Joglar, J. Bujons,
P. Clapes, Nat. Chem. 2015, 7, 724–729.
31 For all of the calculations, dispersion-corrected, broken-spin (U)DFT functionals (UM06/6-311+G(d,p)-SMD(water)//UB3LYP/6-31G(d) and
UB3LYP-D3/6-311+G(d,p)-SMD(water)//UB3LYP/6-31G(d)) were used. Further, the energy profile using dynamic correlation, open-shell
domain-based local pair natural orbital coupled-cluster calculations (DLPNO-CCSD(T)/def2-TZVPP-SMD(water)//UB3LYP/6-31G(d)) were
compared, which are known to provide accurate energies (within 3 kJ mol-1) with the computational cost comparable to DFT calculations.
Overall, all methods provided similar conclusions (See Supporting Information for further details). For simplicity, only UM06/6-311+G(d,p)-
SMD(water)//UB3LYP/6-31G(d) energies will be discussed in the manuscript.
32 O. Gutierrez, J. C. Tellis, D. N. Primer, G. A. Molander, M. C. Kozlowski, J. Am. Chem. Soc. 2015, 137, 4
896-4899
33 We also considered the protonation of B’’ followed by: (i) outer-sphere C(sp2)–C(sp3) bond formation and (ii) radical addition, with subsequent
inner sphere C(sp2)–C(sp3) bond formation. However, the barriers for both protonated inner sphere and outer sphere pathways were higher in
energy than the anionic pathway (see Supporting Information).
This article is protected by copyright. All rights reserved.